BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 27190091)

  • 1. Optogenetic toolkit reveals the role of Ca2+ sparklets in coordinated cell migration.
    Kim JM; Lee M; Kim N; Heo WD
    Proc Natl Acad Sci U S A; 2016 May; 113(21):5952-7. PubMed ID: 27190091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flickering calcium microdomains signal turning of migrating cells.
    Wei C; Wang X; Chen M; Ouyang K; Zheng M; Cheng H
    Can J Physiol Pharmacol; 2010 Feb; 88(2):105-10. PubMed ID: 20237584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium sparklets in arterial smooth muscle.
    Santana LF; Navedo MF; Amberg GC; Nieves-Cintrón M; Votaw VS; Ufret-Vincenty CA
    Clin Exp Pharmacol Physiol; 2008 Sep; 35(9):1121-6. PubMed ID: 18215181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subcellular distribution of calcium-sensitive potassium channels (IK1) in migrating cells.
    Schwab A; Wulf A; Schulz C; Kessler W; Nechyporuk-Zloy V; Römer M; Reinhardt J; Weinhold D; Dieterich P; Stock C; Hebert SC
    J Cell Physiol; 2006 Jan; 206(1):86-94. PubMed ID: 15965951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local regulation of L-type Ca²⁺ channel sparklets in arterial smooth muscle.
    Navedo MF; Amberg GC
    Microcirculation; 2013 May; 20(4):290-8. PubMed ID: 23116449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optogenetic toolkit for precise control of calcium signaling.
    Ma G; Wen S; He L; Huang Y; Wang Y; Zhou Y
    Cell Calcium; 2017 Jun; 64():36-46. PubMed ID: 28104276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ca2+ pulses control local cycles of lamellipodia retraction and adhesion along the front of migrating cells.
    Tsai FC; Meyer T
    Curr Biol; 2012 May; 22(9):837-42. PubMed ID: 22521790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium sparklets regulate local and global calcium in murine arterial smooth muscle.
    Amberg GC; Navedo MF; Nieves-Cintrón M; Molkentin JD; Santana LF
    J Physiol; 2007 Feb; 579(Pt 1):187-201. PubMed ID: 17158168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The reorientation of cell nucleus promotes the establishment of front-rear polarity in migrating fibroblasts.
    Maninová M; Klímová Z; Parsons JT; Weber MJ; Iwanicki MP; Vomastek T
    J Mol Biol; 2013 Jun; 425(11):2039-2055. PubMed ID: 23524135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disruption of actin cytoskeleton causes internalization of Ca(v)1.3 (alpha 1D) L-type calcium channels in salamander retinal neurons.
    Cristofanilli M; Mizuno F; Akopian A
    Mol Vis; 2007 Aug; 13():1496-507. PubMed ID: 17893673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Par-Tiam1 complex controls persistent migration by stabilizing microtubule-dependent front-rear polarity.
    Pegtel DM; Ellenbroek SI; Mertens AE; van der Kammen RA; de Rooij J; Collard JG
    Curr Biol; 2007 Oct; 17(19):1623-34. PubMed ID: 17825562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular and biophysical mechanisms of Ca2+ sparklets in smooth muscle.
    Santana LF; Navedo MF
    J Mol Cell Cardiol; 2009 Oct; 47(4):436-44. PubMed ID: 19616004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epidermal keratinocyte polarity and motility require Ca²⁺ influx through TRPV1.
    Graham DM; Huang L; Robinson KR; Messerli MA
    J Cell Sci; 2013 Oct; 126(Pt 20):4602-13. PubMed ID: 23943873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graded Ca²⁺/calmodulin-dependent coupling of voltage-gated CaV1.2 channels.
    Dixon RE; Moreno CM; Yuan C; Opitz-Araya X; Binder MD; Navedo MF; Santana LF
    Elife; 2015 Feb; 4():. PubMed ID: 25714924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optogenetic control of endogenous Ca(2+) channels in vivo.
    Kyung T; Lee S; Kim JE; Cho T; Park H; Jeong YM; Kim D; Shin A; Kim S; Baek J; Kim J; Kim NY; Woo D; Chae S; Kim CH; Shin HS; Han YM; Kim D; Heo WD
    Nat Biotechnol; 2015 Oct; 33(10):1092-6. PubMed ID: 26368050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell migration: mechanisms of rear detachment and the formation of migration tracks.
    Kirfel G; Rigort A; Borm B; Herzog V
    Eur J Cell Biol; 2004 Dec; 83(11-12):717-24. PubMed ID: 15679116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca
    Lai YS; Chang YH; Chen YY; Xu J; Yu CS; Chang SJ; Chen PS; Tsai SJ; Chiu WT
    J Cell Physiol; 2021 Jun; 236(6):4681-4693. PubMed ID: 33244795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TRPC1 regulates fMLP-stimulated migration and chemotaxis of neutrophil granulocytes.
    Lindemann O; Strodthoff C; Horstmann M; Nielsen N; Jung F; Schimmelpfennig S; Heitzmann M; Schwab A
    Biochim Biophys Acta; 2015 Sep; 1853(9):2122-30. PubMed ID: 25595528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct intracellular calcium profiles following influx through N- versus L-type calcium channels: role of Ca2+-induced Ca2+ release.
    Tully K; Treistman SN
    J Neurophysiol; 2004 Jul; 92(1):135-43. PubMed ID: 14999048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calbindin-D28k decreases L-type calcium channel activity and modulates intracellular calcium homeostasis in response to K+ depolarization in a rat beta cell line RINr1046-38.
    Lee D; Obukhov AG; Shen Q; Liu Y; Dhawan P; Nowycky MC; Christakos S
    Cell Calcium; 2006 Jun; 39(6):475-485. PubMed ID: 16530828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.