These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 2719101)

  • 1. Role of chloride in potassium transport through a K-Cl cotransport system in human red blood cells.
    Brugnara C; Van Ha T; Tosteson DC
    Am J Physiol; 1989 May; 256(5 Pt 1):C994-1003. PubMed ID: 2719101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium and chloride transport across rabbit ileal brush border. II. Evidence for Cl-HCO3 exchange and mechanism of coupling.
    Knickelbein R; Aronson PS; Schron CM; Seifter J; Dobbins JW
    Am J Physiol; 1985 Aug; 249(2 Pt 1):G236-45. PubMed ID: 3927745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Demonstration of a [K+,Cl-]-cotransport system in human red cells by its sensitivity to [(dihydroindenyl)oxy]alkanoic acids: regulation of cell swelling and distinction from the bumetanide-sensitive [Na+,K+,Cl-]-cotransport system.
    Garay RP; Nazaret C; Hannaert PA; Cragoe EJ
    Mol Pharmacol; 1988 Jun; 33(6):696-701. PubMed ID: 3380083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimulation of K-C1 cotransport in rat red cells by a hemolytic anemia-producing metabolite of dapsone.
    Haas M; Harrison JH
    Am J Physiol; 1989 Feb; 256(2 Pt 1):C265-72. PubMed ID: 2919657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Net efflux of chloride from cell suspensions measured with a K+ electrode.
    Rothstein A; Mack E
    Biochim Biophys Acta; 1989 Dec; 987(2):239-42. PubMed ID: 2481504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thiol-dependent passive K: Cl transport in sheep red blood cells: IX. Modulation by pH in the presence and absence of DIDS and the effect of NEM.
    Zade-Oppen AM; Lauf PK
    J Membr Biol; 1990 Nov; 118(2):143-51. PubMed ID: 2266545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Absence of Cl-OH exchange and NaCl cotransport in rabbit renal microvillus membrane vesicles.
    Seifter JL; Knickelbein R; Aronson PS
    Am J Physiol; 1984 Nov; 247(5 Pt 2):F753-9. PubMed ID: 6093589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of DIDS inhibition of swelling-activated K-Cl cotransport in low K sheep erythrocytes.
    Delpire E; Lauf PK
    J Membr Biol; 1992 Feb; 126(1):89-96. PubMed ID: 1593613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of a Cl-dependent K flux by cAMP in pig red cells.
    Kim HD; Sergeant S; Forte LR; Sohn DH; Im JH
    Am J Physiol; 1989 Apr; 256(4 Pt 1):C772-8. PubMed ID: 2539726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycine transport by human red blood cells and ghosts: evidence for glycine anion and proton cotransport by band 3.
    King PA; Gunn RB
    Am J Physiol; 1991 Nov; 261(5 Pt 1):C814-21. PubMed ID: 1659210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Na(+)-K(4)-Cl- cotransport in cultured cells derived from human retinal pigment epithelium.
    Kennedy BG
    Am J Physiol; 1990 Jul; 259(1 Pt 1):C29-34. PubMed ID: 2372049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of the increase in cation permeability of human erythrocytes in low-chloride media. Involvement of the anion transport protein capnophorin.
    Jones GS; Knauf PA
    J Gen Physiol; 1985 Nov; 86(5):721-38. PubMed ID: 4067572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of membrane potential on K-Cl transport in human erythrocytes.
    Kaji DM
    Am J Physiol; 1993 Feb; 264(2 Pt 1):C376-82. PubMed ID: 8447368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathways of Cl- transport in human fibroblasts.
    Lin P; Gruenstein E
    Am J Physiol; 1988 Jul; 255(1 Pt 1):C112-22. PubMed ID: 2968766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement and stoichiometry of bumetanide-sensitive (2Na:1K:3Cl) cotransport in ferret red cells.
    Hall AC; Ellory JC
    J Membr Biol; 1985; 85(3):205-13. PubMed ID: 4032458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Na+-independent Mg2+ efflux from Mg2+-loaded human erythrocytes.
    Günther T; Vormann J
    FEBS Lett; 1989 Apr; 247(2):181-4. PubMed ID: 2541009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of separate K+ and Cl- channels and of Na+/Cl- cotransport in volume regulation in Ehrlich cells.
    Hoffmann EK
    Fed Proc; 1985 Jun; 44(9):2513-9. PubMed ID: 2581818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voltage-activated cation transport in human erythrocytes.
    Halperin JA; Brugnara C; Tosteson MT; Van Ha T; Tosteson DC
    Am J Physiol; 1989 Nov; 257(5 Pt 1):C986-96. PubMed ID: 2596592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sodium-dependent ion cotransport in steady-state Ehrlich ascites tumor cells.
    Levinson C
    J Membr Biol; 1985; 87(2):121-30. PubMed ID: 2416928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A thermodynamic study of electroneutral K-Cl cotransport in pH- and volume-clamped low K sheep erythrocytes with normal and low internal magnesium.
    Lauf PK; Adragna NC
    J Gen Physiol; 1996 Oct; 108(4):341-50. PubMed ID: 8894982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.