These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 27191222)
1. Cell-Targeting Cationic Gene Delivery System Based on a Modular Design Rationale. Liu J; Xu L; Jin Y; Qi C; Li Q; Zhang Y; Jiang X; Wang G; Wang Z; Wang L ACS Appl Mater Interfaces; 2016 Jun; 8(22):14200-10. PubMed ID: 27191222 [TBL] [Abstract][Full Text] [Related]
2. A facile modular approach toward multifunctional supramolecular polyplexes for targeting gene delivery. Liu J; Hennink WE; van Steenbergen MJ; Zhuo R; Jiang X J Mater Chem B; 2016 Nov; 4(43):7022-7030. PubMed ID: 32263569 [TBL] [Abstract][Full Text] [Related]
3. Nonviral DNA Delivery System with Supramolecular PEGylation Formed by Host-Guest Pseudo-Block Copolymers. Zhang Z; Wen Y; Song X; Zhu J; Li J ACS Appl Bio Mater; 2021 Jun; 4(6):5057-5070. PubMed ID: 35007054 [TBL] [Abstract][Full Text] [Related]
4. FGFR-targeted gene delivery mediated by supramolecular assembly between β-cyclodextrin-crosslinked PEI and redox-sensitive PEG. Ping Y; Hu Q; Tang G; Li J Biomaterials; 2013 Sep; 34(27):6482-94. PubMed ID: 23602276 [TBL] [Abstract][Full Text] [Related]
5. Supramolecular host-guest polycationic gene delivery system based on poly(cyclodextrin) and azobenzene-terminated polycations. Jiang Q; Zhang Y; Zhuo R; Jiang X Colloids Surf B Biointerfaces; 2016 Nov; 147():25-35. PubMed ID: 27478960 [TBL] [Abstract][Full Text] [Related]
6. Effects of the incorporation of a hydrophobic middle block into a PEG-polycation diblock copolymer on the physicochemical and cell interaction properties of the polymer-DNA complexes. Sharma R; Lee JS; Bettencourt RC; Xiao C; Konieczny SF; Won YY Biomacromolecules; 2008 Nov; 9(11):3294-307. PubMed ID: 18942877 [TBL] [Abstract][Full Text] [Related]
7. Supramolecular Modular Approach toward Conveniently Constructing and Multifunctioning a pH/Redox Dual-Responsive Drug Delivery Nanoplatform for Improved Cancer Chemotherapy. Liu J; Liu X; Yuan Y; Li Q; Chang B; Xu L; Cai B; Qi C; Li C; Jiang X; Wang G; Wang Z; Wang L ACS Appl Mater Interfaces; 2018 Aug; 10(31):26473-26484. PubMed ID: 29893551 [TBL] [Abstract][Full Text] [Related]
8. Reversibly shielded DNA polyplexes based on bioreducible PDMAEMA-SS-PEG-SS-PDMAEMA triblock copolymers mediate markedly enhanced nonviral gene transfection. Zhu C; Zheng M; Meng F; Mickler FM; Ruthardt N; Zhu X; Zhong Z Biomacromolecules; 2012 Mar; 13(3):769-78. PubMed ID: 22277017 [TBL] [Abstract][Full Text] [Related]
9. Versatile Supramolecular Gene Vector Based on Host-Guest Interaction. Liu J; Hennink WE; van Steenbergen MJ; Zhuo R; Jiang X Bioconjug Chem; 2016 Apr; 27(4):1143-52. PubMed ID: 27019340 [TBL] [Abstract][Full Text] [Related]
10. Chitosan-graft-(PEI-β-cyclodextrin) copolymers and their supramolecular PEGylation for DNA and siRNA delivery. Ping Y; Liu C; Zhang Z; Liu KL; Chen J; Li J Biomaterials; 2011 Nov; 32(32):8328-41. PubMed ID: 21840593 [TBL] [Abstract][Full Text] [Related]
11. Cyclodextrin-based host-guest supramolecular nanoparticles for delivery: from design to applications. Hu QD; Tang GP; Chu PK Acc Chem Res; 2014 Jul; 47(7):2017-25. PubMed ID: 24873201 [TBL] [Abstract][Full Text] [Related]
12. Folic-Acid-Targeted Self-Assembling Supramolecular Carrier for Gene Delivery. Liao R; Yi S; Liu M; Jin W; Yang B Chembiochem; 2015 Jul; 16(11):1622-8. PubMed ID: 26032689 [TBL] [Abstract][Full Text] [Related]
13. A light and reduction dual sensitive supramolecular self-assembly gene delivery system based on poly(cyclodextrin) and disulfide-containing azobenzene-terminated branched polycations. Jiang Q; Zhang Y; Zhuo R; Jiang X J Mater Chem B; 2016 Dec; 4(47):7731-7740. PubMed ID: 32263830 [TBL] [Abstract][Full Text] [Related]
14. Folic acid modified cationic γ-cyclodextrin-oligoethylenimine star polymer with bioreducible disulfide linker for efficient targeted gene delivery. Zhao F; Yin H; Zhang Z; Li J Biomacromolecules; 2013 Feb; 14(2):476-84. PubMed ID: 23323627 [TBL] [Abstract][Full Text] [Related]
15. Supramolecular self-assembly forming a multifunctional synergistic system for targeted co-delivery of gene and drug. Zhao F; Yin H; Li J Biomaterials; 2014 Jan; 35(3):1050-62. PubMed ID: 24189097 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and application of poly(ethylene glycol)-co-poly(β-amino ester) copolymers for small cell lung cancer gene therapy. Kim J; Kang Y; Tzeng SY; Green JJ Acta Biomater; 2016 Sep; 41():293-301. PubMed ID: 27262740 [TBL] [Abstract][Full Text] [Related]
17. Multifunctional disulfide-based cationic dextran conjugates for intravenous gene delivery targeting ovarian cancer cells. Song Y; Lou B; Zhao P; Lin C Mol Pharm; 2014 Jul; 11(7):2250-61. PubMed ID: 24892216 [TBL] [Abstract][Full Text] [Related]
18. Effect of pendant group on pDNA delivery by cationic-β-cyclodextrin:alkyl-PVA-PEG pendant polymer complexes. Kulkarni A; Badwaik V; DeFrees K; Schuldt RA; Gunasekera DS; Powers C; Vlahu A; VerHeul R; Thompson DH Biomacromolecules; 2014 Jan; 15(1):12-9. PubMed ID: 24295406 [TBL] [Abstract][Full Text] [Related]
19. Targeted decationized polyplexes for siRNA delivery. Novo L; Takeda KM; Petteta T; Dakwar GR; van den Dikkenberg JB; Remaut K; Braeckmans K; van Nostrum CF; Mastrobattista E; Hennink WE Mol Pharm; 2015 Jan; 12(1):150-61. PubMed ID: 25384057 [TBL] [Abstract][Full Text] [Related]
20. A cell-specific poly(ethylene glycol) derivative with a wheat-like structure for efficient gene delivery. Li H; Sun X; Zhao D; Zhang Z Mol Pharm; 2012 Nov; 9(11):2974-85. PubMed ID: 22957964 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]