These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 27191367)
1. Thermoelectric Detection of Multi-Subband Density of States in Semiconducting and Metallic Single-Walled Carbon Nanotubes. Shimizu S; Iizuka T; Kanahashi K; Pu J; Yanagi K; Takenobu T; Iwasa Y Small; 2016 Jul; 12(25):3388-92. PubMed ID: 27191367 [TBL] [Abstract][Full Text] [Related]
2. Solving the Thermoelectric Trade-Off Problem with Metallic Carbon Nanotubes. Ichinose Y; Yoshida A; Horiuchi K; Fukuhara K; Komatsu N; Gao W; Yomogida Y; Matsubara M; Yamamoto T; Kono J; Yanagi K Nano Lett; 2019 Oct; 19(10):7370-7376. PubMed ID: 31498635 [TBL] [Abstract][Full Text] [Related]
3. Tuning of the thermoelectric properties of one-dimensional material networks by electric double layer techniques using ionic liquids. Yanagi K; Kanda S; Oshima Y; Kitamura Y; Kawai H; Yamamoto T; Takenobu T; Nakai Y; Maniwa Y Nano Lett; 2014 Nov; 14(11):6437-42. PubMed ID: 25302572 [TBL] [Abstract][Full Text] [Related]
4. Direct identification of metallic and semiconducting single-walled carbon nanotubes in scanning electron microscopy. Li J; He Y; Han Y; Liu K; Wang J; Li Q; Fan S; Jiang K Nano Lett; 2012 Aug; 12(8):4095-101. PubMed ID: 22730928 [TBL] [Abstract][Full Text] [Related]
5. Synergistic Impacts of Electrolyte Adsorption on the Thermoelectric Properties of Single-Walled Carbon Nanotubes. Nakano M; Nakashima T; Kawai T; Nonoguchi Y Small; 2017 Aug; 13(29):. PubMed ID: 28597502 [TBL] [Abstract][Full Text] [Related]
6. Nanocomposites with p- and n-Type Conductivity Controlled by Type and Content of Nanotubes in Thermosets for Thermoelectric Applications. Kröning K; Krause B; Pötschke P; Fiedler B Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32532140 [TBL] [Abstract][Full Text] [Related]
7. General rules for selective growth of enriched semiconducting single walled carbon nanotubes with water vapor as in situ etchant. Zhou W; Zhan S; Ding L; Liu J J Am Chem Soc; 2012 Aug; 134(34):14019-26. PubMed ID: 22873685 [TBL] [Abstract][Full Text] [Related]
9. Charge and Thermoelectric Transport in Polymer-Sorted Semiconducting Single-Walled Carbon Nanotube Networks. Statz M; Schneider S; Berger FJ; Lai L; Wood WA; Abdi-Jalebi M; Leingang S; Himmel HJ; Zaumseil J; Sirringhaus H ACS Nano; 2020 Nov; 14(11):15552-15565. PubMed ID: 33166124 [TBL] [Abstract][Full Text] [Related]
10. Scanning tunneling microscopy simulations of nitrogen- and boron-doped graphene and single-walled carbon nanotubes. Zheng B; Hermet P; Henrard L ACS Nano; 2010 Jul; 4(7):4165-73. PubMed ID: 20552993 [TBL] [Abstract][Full Text] [Related]
11. Effect of substitutionally boron-doped single-walled semiconducting zigzag carbon nanotubes on ammonia adsorption. Vikramaditya T; Sumithra K J Comput Chem; 2014 Mar; 35(7):586-94. PubMed ID: 24395720 [TBL] [Abstract][Full Text] [Related]
12. Effect of B/N co-doping on the stability and electronic structure of single-walled carbon nanotubes by first-principles theory. Li YT; Chen TC Nanotechnology; 2009 Sep; 20(37):375705. PubMed ID: 19706947 [TBL] [Abstract][Full Text] [Related]
13. Thermoelectric power of a single-walled carbon nanotubes rope. Yu F; Hu L; Zhou H; Qiu C; Yang H; Chen M; Lu J; Sun L J Nanosci Nanotechnol; 2013 Feb; 13(2):1335-8. PubMed ID: 23646631 [TBL] [Abstract][Full Text] [Related]
14. Thin film transistors using preferentially grown semiconducting single-walled carbon nanotube networks by water-assisted plasma-enhanced chemical vapor deposition. Kim UJ; Lee EH; Kim JM; Min YS; Kim E; Park W Nanotechnology; 2009 Jul; 20(29):295201. PubMed ID: 19567966 [TBL] [Abstract][Full Text] [Related]
15. Modulating electronic transport properties of carbon nanotubes to improve the thermoelectric power factor via nanoparticle decoration. Yu C; Ryu Y; Yin L; Yang H ACS Nano; 2011 Feb; 5(2):1297-303. PubMed ID: 21222461 [TBL] [Abstract][Full Text] [Related]
17. Modulation of thermoelectric power of individual carbon nanotubes. Small JP; Perez KM; Kim P Phys Rev Lett; 2003 Dec; 91(25):256801. PubMed ID: 14754135 [TBL] [Abstract][Full Text] [Related]
18. The BN-pair impurity in carbon nanotubes and the possibility for disorder-induced frustration of gap formation. Cartoixà X; Rurali R Nanotechnology; 2008 Nov; 19(44):445709. PubMed ID: 21832751 [TBL] [Abstract][Full Text] [Related]
19. Effect of interwall interaction on the electronic structure of double-walled carbon nanotubes. Soto M; Boyer TA; Biradar S; Ge L; Vajtai R; Elías-Zúñiga A; Ajayan PM; Barrera EV Nanotechnology; 2015 Apr; 26(16):165201. PubMed ID: 25816374 [TBL] [Abstract][Full Text] [Related]