BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 27191550)

  • 21. Biosorption of nickel onto treated alga (Oedogonium hatei): Application of isotherm and kinetic models.
    Gupta VK; Rastogi A; Nayak A
    J Colloid Interface Sci; 2010 Feb; 342(2):533-9. PubMed ID: 20004906
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biosorption potentials of a novel green biosorbent Saccharum bengalense containing cellulose as carbohydrate polymer for removal of Ni (II) ions from aqueous solutions.
    Din MI; Mirza ML
    Int J Biol Macromol; 2013 Mar; 54():99-108. PubMed ID: 23219872
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biosorption of Cr (VI) from aqueous solutions by biomass of Agaricus bisporus.
    Ertugay N; Bayhan YK
    J Hazard Mater; 2008 Jun; 154(1-3):432-9. PubMed ID: 18078714
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Removal of mercury(II) from aqueous solution using moss (Drepanocladus revolvens) biomass: equilibrium, thermodynamic and kinetic studies.
    Sari A; Tuzen M
    J Hazard Mater; 2009 Nov; 171(1-3):500-7. PubMed ID: 19576694
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced biosorption of nickel(II) ions by silica-gel-immobilized waste biomass: biosorption characteristics in batch and dynamic flow mode.
    Akar T; Kaynak Z; Ulusoy S; Yuvaci D; Ozsari G; Akar ST
    J Hazard Mater; 2009 Apr; 163(2-3):1134-41. PubMed ID: 18755542
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biosorption of copper(II) by nonliving lichen biomass of Cladonia rangiformis hoffm.
    Ekmekyapar F; Aslan A; Bayhan YK; Cakici A
    J Hazard Mater; 2006 Sep; 137(1):293-8. PubMed ID: 16530938
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sorption and desorption studies of chromium(VI) from nonviable cyanobacterium Nostoc muscorum biomass.
    Gupta VK; Rastogi A
    J Hazard Mater; 2008 Jun; 154(1-3):347-54. PubMed ID: 18053641
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Removal of nickel(II) from aqueous solution by adsorption on agricultural waste biomass using a response surface methodological approach.
    Garg UK; Kaur MP; Garg VK; Sud D
    Bioresour Technol; 2008 Mar; 99(5):1325-31. PubMed ID: 17383868
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimental analysis and mathematical prediction of Cd(II) removal by biosorption using support vector machines and genetic algorithms.
    Hlihor RM; Diaconu M; Leon F; Curteanu S; Tavares T; Gavrilescu M
    N Biotechnol; 2015 May; 32(3):358-68. PubMed ID: 25224921
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetic and equilibrium studies of biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Amanita rubescens) biomass.
    Sari A; Tuzen M
    J Hazard Mater; 2009 May; 164(2-3):1004-11. PubMed ID: 18845395
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biosorption studies on powder of stem of Acacia nilotica: Removal of arsenic from surface water.
    Baig JA; Kazi TG; Shah AQ; Kandhro GA; Afridi HI; Khan S; Kolachi NF
    J Hazard Mater; 2010 Jun; 178(1-3):941-8. PubMed ID: 20207480
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of clinoptilolite for the removal of nickel ions from water: kinetics and thermodynamics.
    Argun ME
    J Hazard Mater; 2008 Feb; 150(3):587-95. PubMed ID: 17561344
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sorption of Ni(II) ions from aqueous solution by Lewatit cation-exchange resin.
    Dizge N; Keskinler B; Barlas H
    J Hazard Mater; 2009 Aug; 167(1-3):915-26. PubMed ID: 19231079
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Potential of Sargassum wightii biomass for copper(II) removal from aqueous solutions: application of different mathematical models to batch and continuous biosorption data.
    Vijayaraghavan K; Prabu D
    J Hazard Mater; 2006 Sep; 137(1):558-64. PubMed ID: 16600481
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biosorption of nickel from protonated rice bran.
    Zafar MN; Nadeem R; Hanif MA
    J Hazard Mater; 2007 May; 143(1-2):478-85. PubMed ID: 17049420
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Application of response surface methodology for optimization of lead biosorption in an aqueous solution by Aspergillus niger.
    Amini M; Younesi H; Bahramifar N; Lorestani AA; Ghorbani F; Daneshi A; Sharifzadeh M
    J Hazard Mater; 2008 Jun; 154(1-3):694-702. PubMed ID: 18068898
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of Eriobotrya japonica (Thunb.) Lindley (Loquat) seed biomass as a new biosorbent for the removal of malachite green from aqueous solution.
    Aksakal O; Ucun H; Kaya Y
    Water Sci Technol; 2009; 59(8):1631-9. PubMed ID: 19403977
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biosorption of As(III) and As(V) from aqueous solution by macrofungus (Inonotus hispidus) biomass: equilibrium and kinetic studies.
    Sari A; Tuzen M
    J Hazard Mater; 2009 May; 164(2-3):1372-8. PubMed ID: 19022572
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biosorption of lead(II), cadmium(II), copper(II) and nickel(II) by anaerobic granular biomass.
    Hawari AH; Mulligan CN
    Bioresour Technol; 2006 Mar; 97(4):692-700. PubMed ID: 15935654
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetic and equilibrium modeling of biosorption of nickel (II) and cadmium (II) on brewery sludge.
    Kulkarni RM; Vidya Shetty K; Srinikethan G
    Water Sci Technol; 2019 Mar; 79(5):888-894. PubMed ID: 31025967
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.