These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 27191707)

  • 1. Exploiting mitochondria as targets for the development of new antifungals.
    Li D; Calderone R
    Virulence; 2017 Feb; 8(2):159-168. PubMed ID: 27191707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing Complex I (CI) Mitochondrial Subunit Protein Functions in Candida albicans.
    Li D; She X; Calderone R
    Methods Mol Biol; 2022; 2542():151-160. PubMed ID: 36008663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The potential of respiration inhibition as a new approach to combat human fungal pathogens.
    Duvenage L; Munro CA; Gourlay CW
    Curr Genet; 2019 Dec; 65(6):1347-1353. PubMed ID: 31172256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mitochondrial proteomics view of complex I deficiency in Candida albicans.
    She X; Zhang P; Gao Y; Zhang L; Wang Q; Chen H; Calderone R; Liu W; Li D
    Mitochondrion; 2018 Jan; 38():48-57. PubMed ID: 28801230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional diversity of complex I subunits in Candida albicans mitochondria.
    Li D; She X; Calderone R
    Curr Genet; 2016 Feb; 62(1):87-95. PubMed ID: 26373419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repurposing Approach Identifies Auranofin with Broad Spectrum Antifungal Activity That Targets Mia40-Erv1 Pathway.
    Thangamani S; Maland M; Mohammad H; Pascuzzi PE; Avramova L; Koehler CM; Hazbun TR; Seleem MN
    Front Cell Infect Microbiol; 2017; 7():4. PubMed ID: 28149831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative genomics of the oxidative phosphorylation system in fungi.
    Lavín JL; Oguiza JA; Ramírez L; Pisabarro AG
    Fungal Genet Biol; 2008 Sep; 45(9):1248-56. PubMed ID: 18647654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic profiling of fungal cell wall-interfering compounds: identification of a common gene signature.
    García R; Botet J; Rodríguez-Peña JM; Bermejo C; Ribas JC; Revuelta JL; Nombela C; Arroyo J
    BMC Genomics; 2015 Sep; 16(1):683. PubMed ID: 26341223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial Complex I Is a Global Regulator of Secondary Metabolism, Virulence and Azole Sensitivity in Fungi.
    Bromley M; Johns A; Davies E; Fraczek M; Mabey Gilsenan J; Kurbatova N; Keays M; Kapushesky M; Gut M; Gut I; Denning DW; Bowyer P
    PLoS One; 2016; 11(7):e0158724. PubMed ID: 27438017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The antifungal pipeline: the need is established. Are there new compounds?
    Li D; She X; Calderone R
    FEMS Yeast Res; 2020 Jun; 20(4):. PubMed ID: 32353872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a New Class of Antifungals Targeting the Synthesis of Fungal Sphingolipids.
    Mor V; Rella A; Farnoud AM; Singh A; Munshi M; Bryan A; Naseem S; Konopka JB; Ojima I; Bullesbach E; Ashbaugh A; Linke MJ; Cushion M; Collins M; Ananthula HK; Sallans L; Desai PB; Wiederhold NP; Fothergill AW; Kirkpatrick WR; Patterson T; Wong LH; Sinha S; Giaever G; Nislow C; Flaherty P; Pan X; Cesar GV; de Melo Tavares P; Frases S; Miranda K; Rodrigues ML; Luberto C; Nimrichter L; Del Poeta M
    mBio; 2015 Jun; 6(3):e00647. PubMed ID: 26106079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteome and cytoskeleton responses in osteosarcoma cells with reduced OXPHOS activity.
    Annunen-Rasila J; Ohlmeier S; Tuokko H; Veijola J; Majamaa K
    Proteomics; 2007 Jun; 7(13):2189-200. PubMed ID: 17533645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The fungal Achilles' heel: targeting Hsp90 to cripple fungal pathogens.
    Cowen LE
    Curr Opin Microbiol; 2013 Aug; 16(4):377-84. PubMed ID: 23588026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring and exploiting the connection between mitochondria and the virulence of human pathogenic fungi.
    Verma S; Shakya VPS; Idnurm A
    Virulence; 2018 Jan; 9(1):426-446. PubMed ID: 29261004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The novel equisetin-like compound, TA-289, causes aberrant mitochondrial morphology which is independent of the production of reactive oxygen species in Saccharomyces cerevisiae.
    Quek NC; Matthews JH; Bloor SJ; Jones DA; Bircham PW; Heathcott RW; Atkinson PH
    Mol Biosyst; 2013 Aug; 9(8):2125-33. PubMed ID: 23715404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Progress in Research on Mitochondrion-Targeted Antifungal Drugs: a Review.
    Qin Y; Wang J; Lv Q; Han B
    Antimicrob Agents Chemother; 2023 Jun; 67(6):e0000323. PubMed ID: 37195189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Outwitting multidrug resistance to antifungals.
    Monk BC; Goffeau A
    Science; 2008 Jul; 321(5887):367-9. PubMed ID: 18635793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper-modulated gene expression and senescence in the filamentous fungus Podospora anserina.
    Borghouts C; Werner A; Elthon T; Osiewacz HD
    Mol Cell Biol; 2001 Jan; 21(2):390-9. PubMed ID: 11134328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skeletal muscle mitochondria of NDUFS4-/- mice display normal maximal pyruvate oxidation and ATP production.
    Alam MT; Manjeri GR; Rodenburg RJ; Smeitink JA; Notebaart RA; Huynen M; Willems PH; Koopman WJ
    Biochim Biophys Acta; 2015; 1847(6-7):526-33. PubMed ID: 25687896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Back to basics: a revealing secondary reduction of the mitochondrial protein import pathway in diverse intracellular parasites.
    Heinz E; Lithgow T
    Biochim Biophys Acta; 2013 Feb; 1833(2):295-303. PubMed ID: 22366436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.