These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 27192240)

  • 21. Micro-flow analysis by molecular tagging velocimetry and planar Raman-scattering.
    Roetmann K; Schmunk W; Garbe CS; Beushausen V
    Exp Fluids; 2008; 44(3):419-430. PubMed ID: 32214636
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-camera, three-dimensional particle tracking velocimetry.
    Peterson K; Regaard B; Heinemann S; Sick V
    Opt Express; 2012 Apr; 20(8):9031-7. PubMed ID: 22513613
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simultaneous measurement of concentrations and velocities of submicron species using multicolor imaging and microparticle image velocimetry.
    Yang JT; Lai YH; Fang WF; Hsu MH
    Biomicrofluidics; 2010 Mar; 4(1):14109. PubMed ID: 20644678
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stereoscopic particle image velocimetry in inhomogeneous refractive index fields of combustion flows.
    Vanselow C; Hoppe O; Stöbener D; Fischer A
    Appl Opt; 2021 Oct; 60(28):8716-8727. PubMed ID: 34613097
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Temperature measurements in gases by use of planar laser-induced fluorescence imaging of NO.
    Lee MP; McMillin BK; Hanson RK
    Appl Opt; 1993 Sep; 32(27):5379-96. PubMed ID: 20856348
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Time-resolved observations of vibrationally excited NO X
    Fletcher JD; Lanfri L; Ritchie GAD; Hancock G; Islam M; Richmond G
    Phys Chem Chem Phys; 2021 Sep; 23(36):20478-20488. PubMed ID: 34498634
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Planar temperature measurement in compressible flows using laser-induced iodine fluorescence.
    Hartfield RJ; Hollo SD; McDaniel JC
    Opt Lett; 1991 Jan; 16(2):106-8. PubMed ID: 19773852
    [TBL] [Abstract][Full Text] [Related]  

  • 28. OH rotational temperature from two-line laser-excited fluorescence.
    Cattolica R
    Appl Opt; 1981 Apr; 20(7):1156-66. PubMed ID: 20309279
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the use of optical flow methods with spin-tagging magnetic resonance imaging.
    Moser KW; Georgiadis JG; Buckius RO
    Ann Biomed Eng; 2001 Jan; 29(1):9-17. PubMed ID: 11219511
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-line fluorescence thermometry of optically thick shock-tunnel flow.
    Ruyten WM; Smith MS; Price LL; Williams WD
    Appl Opt; 1998 Apr; 37(12):2334-9. PubMed ID: 18273160
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flame flow tagging velocimetry with 193-nm H2O photodissociation.
    Wehrmeyer JA; Ribarov LA; Oguss DA; Pitz RW
    Appl Opt; 1999 Nov; 38(33):6912-7. PubMed ID: 18324234
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Instantaneous temperature field measurements using planar laser-induced fluorescence.
    Seitzman JM; Kychakoff G; Hanson RK
    Opt Lett; 1985 Sep; 10(9):439-41. PubMed ID: 19724474
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Vibrational and rotational excitation of CO2 in the collisional quenching of H2(v = 1)].
    Zhang WJ; Feng L; Li JL; Liu J; Dai K; Shen YF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jun; 34(6):1492-6. PubMed ID: 25358152
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temperature and pressure imaging using infrared planar laser-induced fluorescence.
    Rothamer DA; Hanson RK
    Appl Opt; 2010 Nov; 49(33):6436-47. PubMed ID: 21102669
    [TBL] [Abstract][Full Text] [Related]  

  • 35. State-resolved collisional quenching of vibrationally excited pyrazine (E(vib) = 37,900 cm(-1)) by D35Cl(v = 0).
    Li Z; Korobkova E; Werner K; Shum L; Mullin AS
    J Chem Phys; 2005 Nov; 123(17):174306. PubMed ID: 16375527
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three-dimensional two-component velocity measurement of the flow field induced by the Vorticella picta microorganism using a confocal microparticle image velocimetry technique.
    Nagai M; Oishi M; Oshima M; Asai H; Fujita H
    Biomicrofluidics; 2009 Mar; 3(1):14105. PubMed ID: 19693398
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular velocity imaging of supersonic flows using pulsed planar laser-induced fluorescence of NO.
    Paul PH; Lee MP; Hanson RK
    Opt Lett; 1989 May; 14(9):417-9. PubMed ID: 19749938
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photo-acoustic detection on electronic quenching rate constants of NO excited states.
    Zhang G; Jin Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 May; 78(5):1567-71. PubMed ID: 21388865
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-resolution velocimetry technique based on the decaying streaks of phosphor particles.
    Fan L; Vena P; Savard B; Xuan G; Fond B
    Opt Lett; 2021 Feb; 46(3):641-644. PubMed ID: 33528429
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rate constants for collisional quenching of NO (A(2)Σ(+), v = 0) by He, Ne, Ar, Kr, and Xe, and infrared emission accompanying rare gas and impurity quenching.
    Few J; Hancock G
    Phys Chem Chem Phys; 2014 Jun; 16(22):11047-53. PubMed ID: 24777304
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.