BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

974 related articles for article (PubMed ID: 27192495)

  • 1. The Keap1-Nrf2-ARE Pathway As a Potential Preventive and Therapeutic Target: An Update.
    Lu MC; Ji JA; Jiang ZY; You QD
    Med Res Rev; 2016 Sep; 36(5):924-63. PubMed ID: 27192495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of 2-oxy-2-phenylacetic acid substituted naphthalene sulfonamide derivatives as potent KEAP1-NRF2 protein-protein interaction inhibitors for inflammatory conditions.
    Lu MC; Shao HL; Liu T; You QD; Jiang ZY
    Eur J Med Chem; 2020 Dec; 207():112734. PubMed ID: 32866756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting the KEAP1-NRF2 System to Prevent Kidney Disease Progression.
    Nezu M; Suzuki N; Yamamoto M
    Am J Nephrol; 2017; 45(6):473-483. PubMed ID: 28502971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent progress and applications of small molecule inhibitors of Keap1-Nrf2 axis for neurodegenerative diseases.
    Wang J; Cao Y; Lu Y; Zhu H; Zhang J; Che J; Zhuang R; Shao J
    Eur J Med Chem; 2024 Jan; 264():115998. PubMed ID: 38043492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent progress in Keap1-Nrf2 protein-protein interaction inhibitors.
    Mou Y; Wen S; Li YX; Gao XX; Zhang X; Jiang ZY
    Eur J Med Chem; 2020 Sep; 202():112532. PubMed ID: 32668381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Keap1/Nrf2-ARE Pathway as a Pharmacological Target for Chalcones.
    de Freitas Silva M; Pruccoli L; Morroni F; Sita G; Seghetti F; Viegas C; Tarozzi A
    Molecules; 2018 Jul; 23(7):. PubMed ID: 30037040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nrf2/Keap1/ARE signaling: Towards specific regulation.
    Ulasov AV; Rosenkranz AA; Georgiev GP; Sobolev AS
    Life Sci; 2022 Feb; 291():120111. PubMed ID: 34732330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nrf2 activator via interference of Nrf2-Keap1 interaction has antioxidant and anti-inflammatory properties in Parkinson's disease animal model.
    Kim S; Indu Viswanath AN; Park JH; Lee HE; Park AY; Choi JW; Kim HJ; Londhe AM; Jang BK; Lee J; Hwang H; Lim SM; Pae AN; Park KD
    Neuropharmacology; 2020 May; 167():107989. PubMed ID: 32032607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Advances of Natural Polyphenols Activators for Keap1-Nrf2 Signaling Pathway.
    Zhou Y; Jiang Z; Lu H; Xu Z; Tong R; Shi J; Jia G
    Chem Biodivers; 2019 Nov; 16(11):e1900400. PubMed ID: 31482617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emerging Substrate Proteins of Kelch-like ECH Associated Protein 1 (Keap1) and Potential Challenges for the Development of Small-Molecule Inhibitors of the Keap1-Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) Protein-Protein Interaction.
    Zhang Y; Shi Z; Zhou Y; Xiao Q; Wang H; Peng Y
    J Med Chem; 2020 Aug; 63(15):7986-8002. PubMed ID: 32233486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural insights into the multiple binding modes of Dimethyl Fumarate (DMF) and its analogs to the Kelch domain of Keap1.
    Unni S; Deshmukh P; Krishnappa G; Kommu P; Padmanabhan B
    FEBS J; 2021 Mar; 288(5):1599-1613. PubMed ID: 32672401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directly interact with Keap1 and LPS is involved in the anti-inflammatory mechanisms of (-)-epicatechin-3-gallate in LPS-induced macrophages and endotoxemia.
    Chiou YS; Huang Q; Ho CT; Wang YJ; Pan MH
    Free Radic Biol Med; 2016 May; 94():1-16. PubMed ID: 26878775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design, Synthesis, and Structure-Activity Relationships of Indoline-Based Kelch-like ECH-Associated Protein 1-Nuclear Factor (Erythroid-Derived 2)-Like 2 (Keap1-Nrf2) Protein-Protein Interaction Inhibitors.
    Zhou HS; Hu LB; Zhang H; Shan WX; Wang Y; Li X; Liu T; Zhao J; You QD; Jiang ZY
    J Med Chem; 2020 Oct; 63(19):11149-11168. PubMed ID: 32902980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Keap1/Nrf2/ARE signaling unfolds therapeutic targets for redox imbalanced-mediated diseases and diabetic nephropathy.
    Adelusi TI; Du L; Hao M; Zhou X; Xuan Q; Apu C; Sun Y; Lu Q; Yin X
    Biomed Pharmacother; 2020 Mar; 123():109732. PubMed ID: 31945695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. KEAP1-NRF2 protein-protein interaction inhibitors: Design, pharmacological properties and therapeutic potential.
    Crisman E; Duarte P; Dauden E; Cuadrado A; Rodríguez-Franco MI; López MG; León R
    Med Res Rev; 2023 Jan; 43(1):237-287. PubMed ID: 36086898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CPUY192018, a potent inhibitor of the Keap1-Nrf2 protein-protein interaction, alleviates renal inflammation in mice by restricting oxidative stress and NF-κB activation.
    Lu MC; Zhao J; Liu YT; Liu T; Tao MM; You QD; Jiang ZY
    Redox Biol; 2019 Sep; 26():101266. PubMed ID: 31279986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Keap1-Nrf2 protein-protein interaction: A suitable target for small molecules.
    Schmoll D; Engel CK; Glombik H
    Drug Discov Today Technol; 2017 Jun; 24():11-17. PubMed ID: 29233294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stress-sensing mechanisms and the physiological roles of the Keap1-Nrf2 system during cellular stress.
    Suzuki T; Yamamoto M
    J Biol Chem; 2017 Oct; 292(41):16817-16824. PubMed ID: 28842501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coumarins as Modulators of the Keap1/Nrf2/ARE Signaling Pathway.
    Hassanein EHM; Sayed AM; Hussein OE; Mahmoud AM
    Oxid Med Cell Longev; 2020; 2020():1675957. PubMed ID: 32377290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting the cell signaling pathway Keap1-Nrf2 as a therapeutic strategy for adenocarcinomas of the lung.
    Zhang B; Ma Z; Tan B; Lin N
    Expert Opin Ther Targets; 2019 Mar; 23(3):241-250. PubMed ID: 30556750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 49.