These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 27192622)

  • 1. Subaerial biofilms on granitic historic buildings: microbial diversity and development of phototrophic multi-species cultures.
    Vázquez-Nion D; Rodríguez-Castro J; López-Rodríguez MC; Fernández-Silva I; Prieto B
    Biofouling; 2016 Jul; 32(6):657-69. PubMed ID: 27192622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laboratory grown subaerial biofilms on granite: application to the study of bioreceptivity.
    Vázquez-Nion D; Silva B; Troiano F; Prieto B
    Biofouling; 2017 Jan; 33(1):24-35. PubMed ID: 27911078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectrophotometric color measurement for early detection and monitoring of greening on granite buildings.
    Sanmartín P; Vázquez-Nion D; Silva B; Prieto B
    Biofouling; 2012; 28(3):329-38. PubMed ID: 22452392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular diversity of phototrophic biofilms on building stone.
    Hallmann C; Stannek L; Fritzlar D; Hause-Reitner D; Friedl T; Hoppert M
    FEMS Microbiol Ecol; 2013 May; 84(2):355-72. PubMed ID: 23278436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodiversity of cyanobacteria and green algae on monuments in the Mediterranean Basin: an overview.
    Macedo MF; Miller AZ; Dionísio A; Saiz-Jimenez C
    Microbiology (Reading); 2009 Nov; 155(Pt 11):3476-3490. PubMed ID: 19778965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of the properties of granitic rocks on their bioreceptivity to subaerial phototrophic biofilms.
    Vázquez-Nion D; Silva B; Prieto B
    Sci Total Environ; 2018 Jan; 610-611():44-54. PubMed ID: 28802109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diversity of an aerial phototrophic coating of historic buildings in the former Auschwitz II-Birkenau concentration camp.
    Nowicka-Krawczyk P; Żelazna-Wieczorek J; Otlewska A; Koziróg A; Rajkowska K; Piotrowska M; Gutarowska B; Żydzik-Białek A
    Sci Total Environ; 2014 Sep; 493():116-23. PubMed ID: 24937497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biofilm diversity, structure and matrix seasonality in a full-scale cooling tower.
    Di Gregorio L; Congestri R; Tandoi V; Neu TR; Rossetti S; Di Pippo F
    Biofouling; 2018 Nov; 34(10):1093-1109. PubMed ID: 30663885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endolithic phototrophs in built and natural stone.
    Gaylarde CC; Gaylarde PM; Neilan BA
    Curr Microbiol; 2012 Aug; 65(2):183-8. PubMed ID: 22614098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbiology of the atmosphere-rock interface: how biological interactions and physical stresses modulate a sophisticated microbial ecosystem.
    Gorbushina AA; Broughton WJ
    Annu Rev Microbiol; 2009; 63():431-50. PubMed ID: 19575564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-destructive sampling of rock-dwelling microbial communities using sterile adhesive tape.
    Cutler NA; Oliver AE; Viles HA; Whiteley AS
    J Microbiol Methods; 2012 Dec; 91(3):391-8. PubMed ID: 23022426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyanobacteria cause black staining of the National Museum of the American Indian Building, Washington, DC, USA.
    Cappitelli F; Salvadori O; Albanese D; Villa F; Sorlini C
    Biofouling; 2012; 28(3):257-66. PubMed ID: 22435895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epilithic and endolithic microorganisms and deterioration on stone church facades subject to urban pollution in a sub-tropical climate.
    Gaylarde C; Baptista-Neto JA; Ogawa A; Kowalski M; Celikkol-Aydin S; Beech I
    Biofouling; 2017 Feb; 33(2):113-127. PubMed ID: 28054493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Algal and cyanobacterial biofilms on calcareous historic buildings.
    Crispim CA; Gaylarde PM; Gaylarde CC
    Curr Microbiol; 2003 Feb; 46(2):79-82. PubMed ID: 12520359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response surface optimization of a method for extracting extracellular polymeric substances (EPS) from subaerial biofilms on rocky substrata.
    Vázquez-Nion D; Echeverri M; Silva B; Prieto B
    Anal Bioanal Chem; 2016 Sep; 408(23):6369-79. PubMed ID: 27423193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Importance of subaerial biofilms and airborne microflora in the deterioration of stonework: a molecular study.
    Polo A; Gulotta D; Santo N; Di Benedetto C; Fascio U; Toniolo L; Villa F; Cappitelli F
    Biofouling; 2012; 28(10):1093-106. PubMed ID: 23025579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Desmids and biofilms of freshwater wetlands: development and microarchitecture.
    Domozych DS; Domozych CR
    Microb Ecol; 2008 Jan; 55(1):81-93. PubMed ID: 17450460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Algal 'greening' and the conservation of stone heritage structures.
    Cutler NA; Viles HA; Ahmad S; McCabe S; Smith BJ
    Sci Total Environ; 2013 Jan; 442():152-64. PubMed ID: 23178775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capsular polysaccharides of cultured phototrophic biofilms.
    Di Pippo F; Bohn A; Congestri R; De Philippis R; Albertano P
    Biofouling; 2009; 25(6):495-504. PubMed ID: 19382011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reproducing stone monument photosynthetic-based colonization under laboratory conditions.
    Miller AZ; Laiz L; Gonzalez JM; Dionísio A; Macedo MF; Saiz-Jimenez C
    Sci Total Environ; 2008 Nov; 405(1-3):278-85. PubMed ID: 18768211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.