These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 2719265)
1. Fourier transform infrared least-squares methods for the quantitative analysis of multicomponent mixtures of airborne vapors of industrial hygiene concern. Ying LS; Levine SP Anal Chem; 1989 Apr; 61(7):677-83. PubMed ID: 2719265 [TBL] [Abstract][Full Text] [Related]
2. Fourier transform infrared (FTIR) spectroscopy for monitoring airborne gases and vapors of industrial hygiene concern. Ying LS; Levine SP; Strang CR; Herget WF Am Ind Hyg Assoc J; 1989 Jul; 50(7):354-9. PubMed ID: 2756866 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of the applicability of fourier transform infrared (FTIR) spectroscopy for quantitation of the components of airborne solvent vapors in air. Ying LS; Levine SP Am Ind Hyg Assoc J; 1989 Jul; 50(7):360-5. PubMed ID: 2756867 [TBL] [Abstract][Full Text] [Related]
4. Analysis of organic vapors in the workplace by remote sensing Fourier transform infrared spectroscopy. Xiao H; Levine SP; Nowak J; Puskar M; Spear RC Am Ind Hyg Assoc J; 1993 Sep; 54(9):545-56. PubMed ID: 8379497 [TBL] [Abstract][Full Text] [Related]
5. Application of computerized differentiation technique to remote-sensing Fourier transform infrared spectrometry for analysis of toxic vapors. Xiao H; Levine SP Anal Chem; 1993 Sep; 65(17):2262-9. PubMed ID: 8238926 [TBL] [Abstract][Full Text] [Related]
6. Field evaluation of a transportable open-path FTIR spectrometer for real-time air monitoring. Ross KR; Todd LA Appl Occup Environ Hyg; 2002 Feb; 17(2):131-43. PubMed ID: 11843199 [TBL] [Abstract][Full Text] [Related]
7. Iterative least-squares fit procedures for the identification of organic vapor mixtures by Fourier transform infrared spectrophotometry. Xiao HK; Levine SP; D'Arcy JB Anal Chem; 1989 Dec; 61(24):2708-14. PubMed ID: 2619056 [TBL] [Abstract][Full Text] [Related]
8. Comparison of the Fourier transform infrared (FTIR) spectrophotometer and the Miniature Infrared Analyzer (MIRAN) for the determination of trichloroethylene (TCE) in the presence of Freon-113 in workplace air. Xiao HK; Levine SP; D'Arcy JB; Kinnes G; Almaguer D Am Ind Hyg Assoc J; 1990 Jul; 51(7):395-401. PubMed ID: 2382642 [TBL] [Abstract][Full Text] [Related]
9. Analysis of complex mixtures of vapors in ambient air by fast-gas chromatography. Ke H; Levine SP; Berkley R J Air Waste Manage Assoc; 1992 Nov; 42(11):1446-52. PubMed ID: 1482566 [TBL] [Abstract][Full Text] [Related]
10. Quantitative determination of ethanol in heated plumes by passive Fourier transform infrared remote sensing measurements. Sulub Y; Small GW Analyst; 2007 Apr; 132(4):330-7. PubMed ID: 17554412 [TBL] [Abstract][Full Text] [Related]
11. Field evaluation of selected monitoring methods for phosgene in air. Tuggle RM; Esposito GG; Guinivan TL; Hess TL; Lillian D; Podolak GE; Sexton KG; Smith NV Am Ind Hyg Assoc J; 1979 May; 40(5):387-94. PubMed ID: 463749 [TBL] [Abstract][Full Text] [Related]
12. The use of a transportable Fourier transform infrared (FTIR) spectrometer for the direct measurement of solvents in breath and ambient air--I: Methanol. Franzblau A; Levine SP; Burgess LA; Qu QS; Schreck RM; D'Arcy JB Am Ind Hyg Assoc J; 1992 Apr; 53(4):221-7. PubMed ID: 1529913 [TBL] [Abstract][Full Text] [Related]
14. Selective Weighted Least Squares Method for Fourier Transform Infrared Quantitative Analysis. Wang X; Li Y; Wei H; Chen X Appl Spectrosc; 2017 Jun; 71(6):1231-1241. PubMed ID: 27798384 [TBL] [Abstract][Full Text] [Related]
15. Mobile Fourier-transform infrared spectroscopy monitoring of air pollution. Haus R; Schafer K; Bautzer W; Heland J; Mosebach H; Bittner H; Eisenmann T Appl Opt; 1994 Aug; 33(24):5682-9. PubMed ID: 20935969 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of an infrared open-path spectrometer using an exposure chamber and a calibration cell. Todd L; Ramachandran G Am Ind Hyg Assoc J; 1995 Feb; 56(2):151-7. PubMed ID: 7856516 [TBL] [Abstract][Full Text] [Related]
17. [Detecting the nitrogen oxide in air with portable infrared spectrometer]. Liu J; Zhang F; Zhu BL; Xia CY Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2011 Nov; 29(11):862-4. PubMed ID: 22468313 [TBL] [Abstract][Full Text] [Related]
18. Modeling Microalgal Biosediment Formation Based on Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Monitoring. Ogburn ZL; Vogt F Appl Spectrosc; 2018 Mar; 72(3):366-377. PubMed ID: 28777003 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of Diffuse Reflection Infrared Spectrometry for End-of-Shift Measurement of α-quartz in Coal Dust Samples. Miller AL; Murphy NC; Bayman SJ; Briggs ZP; Kilpatrick AD; Quinn CA; Wadas MR; Cauda EG; Griffiths PR J Occup Environ Hyg; 2015; 12(7):421-30. PubMed ID: 25636081 [TBL] [Abstract][Full Text] [Related]
20. Application of the Polynomial-Based Least Squares and Total Least Squares Models for the Attenuated Total Reflection Fourier Transform Infrared Spectra of Binary Mixtures of Hydroxyl Compounds. Shan P; Peng S; Zhao Y; Tang L Appl Spectrosc; 2016 Mar; 70(3):505-19. PubMed ID: 26810185 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]