These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 27193000)
21. Multiple stressors affecting microbial decomposer and litter decomposition in restored urban streams: Assessing effects of salinization, increased temperature, and reduced flow velocity in a field mesocosm experiment. David GM; Pimentel IM; Rehsen PM; Vermiert AM; Leese F; Gessner MO Sci Total Environ; 2024 Sep; 943():173669. PubMed ID: 38839005 [TBL] [Abstract][Full Text] [Related]
22. Phosphorus availability modulates the toxic effect of silver on aquatic fungi and leaf litter decomposition. Funck JA; Clivot H; Felten V; Rousselle P; Guérold F; Danger M Aquat Toxicol; 2013 Nov; 144-145():199-207. PubMed ID: 24184839 [TBL] [Abstract][Full Text] [Related]
23. Whole-stream nitrate addition affects litter decomposition and associated fungi but not invertebrates. Ferreira V; Gulis V; Graça MA Oecologia; 2006 Oct; 149(4):718-29. PubMed ID: 16858587 [TBL] [Abstract][Full Text] [Related]
24. Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra. Christiansen CT; Haugwitz MS; Priemé A; Nielsen CS; Elberling B; Michelsen A; Grogan P; Blok D Glob Chang Biol; 2017 Jan; 23(1):406-420. PubMed ID: 27197084 [TBL] [Abstract][Full Text] [Related]
25. Responses of primary production, leaf litter decomposition and associated communities to stream eutrophication. Dunck B; Lima-Fernandes E; Cássio F; Cunha A; Rodrigues L; Pascoal C Environ Pollut; 2015 Jul; 202():32-40. PubMed ID: 25797823 [TBL] [Abstract][Full Text] [Related]
26. Temperature Sensitivity of Microbial Litter Decomposition in Freshwaters: Role of Leaf Litter Quality and Environmental Characteristics. Monroy S; Larrañaga A; Martínez A; Pérez J; Molinero J; Basaguren A; Pozo J Microb Ecol; 2023 Apr; 85(3):839-852. PubMed ID: 35654854 [TBL] [Abstract][Full Text] [Related]
27. Riparian plant species loss alters trophic dynamics in detritus-based stream ecosystems. Lecerf A; Dobson M; Dang CK; Chauvet E Oecologia; 2005 Dec; 146(3):432-42. PubMed ID: 16096846 [TBL] [Abstract][Full Text] [Related]
28. No evidence for leaf-trait dissimilarity effects on litter decomposition, fungal decomposers, and nutrient dynamics. Frainer A; Moretti MS; Xu W; Gessner MO Ecology; 2015 Feb; 96(2):550-61. PubMed ID: 26240875 [TBL] [Abstract][Full Text] [Related]
29. [Leaf litter decomposition in six Cloud Forest streams of the upper La Antigua watershed, Veracruz, Mexico]. Astudillo MR; Ramírez A; Novelo-Gutiérrez R; Vázquez G Rev Biol Trop; 2014 Apr; 62 Suppl 2():111-27. PubMed ID: 25189073 [TBL] [Abstract][Full Text] [Related]
30. Alteration of microbial communities colonizing leaf litter in a temperate woodland stream by growth of trees under conditions of elevated atmospheric CO2. Kelly JJ; Bansal A; Winkelman J; Janus LR; Hell S; Wencel M; Belt P; Kuehn KA; Rier ST; Tuchman NC Appl Environ Microbiol; 2010 Aug; 76(15):4950-9. PubMed ID: 20543045 [TBL] [Abstract][Full Text] [Related]
31. Contribution of fungi and bacteria to leaf litter decomposition in a polluted river. Pascoal C; Cássio F Appl Environ Microbiol; 2004 Sep; 70(9):5266-73. PubMed ID: 15345409 [TBL] [Abstract][Full Text] [Related]
32. Experimentally simulated global warming and nitrogen enrichment effects on microbial litter decomposers in a marsh. Flury S; Gessner MO Appl Environ Microbiol; 2011 Feb; 77(3):803-9. PubMed ID: 21148695 [TBL] [Abstract][Full Text] [Related]
33. Warming water and leaf litter quality but not plant origin drive decomposition and fungal diversity in an experiment. Gentilin-Avanci C; Pinha GD; Ratz Scoarize MM; Petsch DK; Benedito E Fungal Biol; 2022 Oct; 126(10):631-639. PubMed ID: 36116895 [TBL] [Abstract][Full Text] [Related]
34. High diversity of fungi may mitigate the impact of pollution on plant litter decomposition in streams. Duarte S; Pascoal C; Cássio F Microb Ecol; 2008 Nov; 56(4):688-95. PubMed ID: 18443846 [TBL] [Abstract][Full Text] [Related]
35. Invasive Acacia Tree Species Affect Instream Litter Decomposition Through Changes in Water Nitrogen Concentration and Litter Characteristics. Pereira A; Figueiredo A; Ferreira V Microb Ecol; 2021 Jul; 82(1):257-273. PubMed ID: 33864129 [TBL] [Abstract][Full Text] [Related]
36. Litter Breakdown and Microbial Succession on Two Submerged Leaf Species in a Small Forested Stream. Newman MM; Liles MR; Feminella JW PLoS One; 2015; 10(6):e0130801. PubMed ID: 26098687 [TBL] [Abstract][Full Text] [Related]
37. Heterogeneity in leaf litter decomposition in a temporary Mediterranean stream during flow fragmentation. Abril M; Muñoz I; Menéndez M Sci Total Environ; 2016 May; 553():330-339. PubMed ID: 26930306 [TBL] [Abstract][Full Text] [Related]
38. Litter Quality Is a Stronger Driver than Temperature of Early Microbial Decomposition in Oligotrophic Streams: a Microcosm Study. Pérez J; Ferreira V; Graça MAS; Boyero L Microb Ecol; 2021 Nov; 82(4):897-908. PubMed ID: 34570249 [TBL] [Abstract][Full Text] [Related]
39. Assessing the effect of litter species on the dynamic of bacterial and fungal communities during leaf decomposition in microcosm by molecular techniques. Xu W; Shi L; Chan O; Li J; Casper P; Zou X PLoS One; 2013; 8(12):e84613. PubMed ID: 24367682 [TBL] [Abstract][Full Text] [Related]
40. Relative importance of bacteria and fungi in a tropical headwater stream: leaf decomposition and invertebrate feeding preference. Wright MS; Covich AP Microb Ecol; 2005 May; 49(4):536-46. PubMed ID: 16052374 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]