These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 27193160)

  • 41. SaFiDe: Detection of saccade and fixation periods based on eye-movement attributes from video-oculography, scleral coil or electrooculography data.
    Madariaga S; Babul C; Egaña JI; Rubio-Venegas I; Güney G; Concha-Miranda M; Maldonado PE; Devia C
    MethodsX; 2023; 10():102041. PubMed ID: 36814691
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dynamics and efficacy of saccade-facilitated vergence eye movements in monkeys.
    Maxwell JS; King WM
    J Neurophysiol; 1992 Oct; 68(4):1248-60. PubMed ID: 1432082
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Neural activation associated with corrective saccades during tasks with fixation, pursuit and saccades.
    Haller S; Fasler D; Ohlendorf S; Radue EW; Greenlee MW
    Exp Brain Res; 2008 Jan; 184(1):83-94. PubMed ID: 17717657
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Parsing eye-tracking data of variable quality to provide accurate fixation duration estimates in infants and adults.
    Wass SV; Smith TJ; Johnson MH
    Behav Res Methods; 2013 Mar; 45(1):229-50. PubMed ID: 22956360
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Noise-robust fixation detection in eye movement data: Identification by two-means clustering (I2MC).
    Hessels RS; Niehorster DC; Kemner C; Hooge ITC
    Behav Res Methods; 2017 Oct; 49(5):1802-1823. PubMed ID: 27800582
    [TBL] [Abstract][Full Text] [Related]  

  • 46. GraFIX: a semiautomatic approach for parsing low- and high-quality eye-tracking data.
    Saez de Urabain IR; Johnson MH; Smith TJ
    Behav Res Methods; 2015 Mar; 47(1):53-72. PubMed ID: 24671827
    [TBL] [Abstract][Full Text] [Related]  

  • 47. It depends on how you look at it: scanpath comparison in multiple dimensions with MultiMatch, a vector-based approach.
    Dewhurst R; Nyström M; Jarodzka H; Foulsham T; Johansson R; Holmqvist K
    Behav Res Methods; 2012 Dec; 44(4):1079-100. PubMed ID: 22648695
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Parietal lobe mechanisms for directed visual attention.
    Lynch JC; Mountcastle VB; Talbot WH; Yin TC
    J Neurophysiol; 1977 Mar; 40(2):362-89. PubMed ID: 403251
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Monkey superior colliculus represents rapid eye movements in a two-dimensional motor map.
    Hepp K; Van Opstal AJ; Straumann D; Hess BJ; Henn V
    J Neurophysiol; 1993 Mar; 69(3):965-79. PubMed ID: 8385203
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An information maximization model of eye movements.
    Renninger LW; Coughlan J; Verghese P; Malik J
    Adv Neural Inf Process Syst; 2005; 17():1121-8. PubMed ID: 16175670
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Differential eye movements in mild traumatic brain injury versus normal controls.
    Cifu DX; Wares JR; Hoke KW; Wetzel PA; Gitchel G; Carne W
    J Head Trauma Rehabil; 2015; 30(1):21-8. PubMed ID: 24695263
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Saccades to remembered targets: the effects of smooth pursuit and illusory stimulus motion.
    Zivotofsky AZ; Rottach KG; Averbuch-Heller L; Kori AA; Thomas CW; Dell'Osso LF; Leigh RJ
    J Neurophysiol; 1996 Dec; 76(6):3617-32. PubMed ID: 8985862
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Eye movement analysis for activity recognition using electrooculography.
    Bulling A; Ward JA; Gellersen H; Tröster G
    IEEE Trans Pattern Anal Mach Intell; 2011 Apr; 33(4):741-53. PubMed ID: 20421675
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dynamic coding of vertical facilitated vergence by premotor saccadic burst neurons.
    Van Horn MR; Cullen KE
    J Neurophysiol; 2008 Oct; 100(4):1967-82. PubMed ID: 18632878
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Coordination of smooth pursuit and saccade target selection in monkeys.
    Case GR; Ferrera VP
    J Neurophysiol; 2007 Oct; 98(4):2206-14. PubMed ID: 17715189
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Site and parameters of microstimulation: evidence for independent effects on the properties of saccades evoked from the primate superior colliculus.
    Stanford TR; Freedman EG; Sparks DL
    J Neurophysiol; 1996 Nov; 76(5):3360-81. PubMed ID: 8930279
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Release of fixation for pursuit and saccades in humans: evidence for shared inputs acting on different neural substrates.
    Krauzlis RJ; Miles FA
    J Neurophysiol; 1996 Nov; 76(5):2822-33. PubMed ID: 8930235
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of voluntary blinks on saccades, vergence eye movements, and saccade-vergence interactions in humans.
    Rambold H; Sprenger A; Helmchen C
    J Neurophysiol; 2002 Sep; 88(3):1220-33. PubMed ID: 12205143
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Individuals exhibit idiosyncratic eye-movement behavior profiles across tasks.
    Poynter W; Barber M; Inman J; Wiggins C
    Vision Res; 2013 Aug; 89():32-8. PubMed ID: 23867568
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Saccade-Related Potentials During Eye-Hand Coordination: Effects of Hand Movements on Saccade Preparation.
    Sailer U; Güldenpfennig F; Eggert T
    Motor Control; 2016 Jul; 20(3):316-36. PubMed ID: 26284290
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.