These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 27193323)

  • 21. Embryonic interneurons from the medial, but not the caudal ganglionic eminence trigger ocular dominance plasticity in adult mice.
    Isstas M; Teichert M; Bolz J; Lehmann K
    Brain Struct Funct; 2017 Jan; 222(1):539-547. PubMed ID: 27165433
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interneuron Simplification and Loss of Structural Plasticity As Markers of Aging-Related Functional Decline.
    Eavri R; Shepherd J; Welsh CA; Flanders GH; Bear MF; Nedivi E
    J Neurosci; 2018 Sep; 38(39):8421-8432. PubMed ID: 30108129
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ocular dominance plasticity disrupts binocular inhibition-excitation matching in visual cortex.
    Saiepour MH; Rajendran R; Omrani A; Ma WP; Tao HW; Heimel JA; Levelt CN
    Curr Biol; 2015 Mar; 25(6):713-721. PubMed ID: 25754642
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Short-term Synaptic Depression in the Feedforward Inhibitory Circuit in the Dorsal Lateral Geniculate Nucleus.
    Augustinaite S; Heggelund P
    Neuroscience; 2018 Aug; 384():76-86. PubMed ID: 29802882
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Disinhibition in learning and memory circuits: New vistas for somatostatin interneurons and long-term synaptic plasticity.
    Artinian J; Lacaille JC
    Brain Res Bull; 2018 Jul; 141():20-26. PubMed ID: 29174732
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Non-cell Autonomous OTX2 Homeoprotein Regulates Visual Cortex Plasticity Through Gadd45b/g.
    Apulei J; Kim N; Testa D; Ribot J; Morizet D; Bernard C; Jourdren L; Blugeon C; Di Nardo AA; Prochiantz A
    Cereb Cortex; 2019 Jun; 29(6):2384-2395. PubMed ID: 29771284
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Activation of specific interneurons improves V1 feature selectivity and visual perception.
    Lee SH; Kwan AC; Zhang S; Phoumthipphavong V; Flannery JG; Masmanidis SC; Taniguchi H; Huang ZJ; Zhang F; Boyden ES; Deisseroth K; Dan Y
    Nature; 2012 Aug; 488(7411):379-83. PubMed ID: 22878719
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cortical Control of Spatial Resolution by VIP+ Interneurons.
    Ayzenshtat I; Karnani MM; Jackson J; Yuste R
    J Neurosci; 2016 Nov; 36(45):11498-11509. PubMed ID: 27911754
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deciphering functional roles of synaptic plasticity and intrinsic neural firing in developing mouse visual cortex layer IV microcircuit.
    Liu S; Li Y
    J Comput Neurosci; 2023 Feb; 51(1):23-42. PubMed ID: 35737171
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Progressive maturation of silent synapses governs the duration of a critical period.
    Huang X; Stodieck SK; Goetze B; Cui L; Wong MH; Wenzel C; Hosang L; Dong Y; Löwel S; Schlüter OM
    Proc Natl Acad Sci U S A; 2015 Jun; 112(24):E3131-40. PubMed ID: 26015564
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transient and localized optogenetic activation of somatostatin-interneurons in mouse visual cortex abolishes long-term cortical plasticity due to vision loss.
    Scheyltjens I; Vreysen S; Van den Haute C; Sabanov V; Balschun D; Baekelandt V; Arckens L
    Brain Struct Funct; 2018 Jun; 223(5):2073-2095. PubMed ID: 29372324
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nogo Receptor 1 Confines a Disinhibitory Microcircuit to the Critical Period in Visual Cortex.
    Stephany CÉ; Ikrar T; Nguyen C; Xu X; McGee AW
    J Neurosci; 2016 Oct; 36(43):11006-11012. PubMed ID: 27798181
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Neural Circuit That Controls Cortical State, Plasticity, and the Gain of Sensory Responses in Mouse.
    Stryker MP
    Cold Spring Harb Symp Quant Biol; 2014; 79():1-9. PubMed ID: 25948638
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular mechanisms of experience-dependent maturation in cortical GABAergic inhibition.
    Begum MR; Sng JCG
    J Neurochem; 2017 Sep; 142(5):649-661. PubMed ID: 28628196
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synapse-Selective Control of Cortical Maturation and Plasticity by Parvalbumin-Autonomous Action of SynCAM 1.
    Ribic A; Crair MC; Biederer T
    Cell Rep; 2019 Jan; 26(2):381-393.e6. PubMed ID: 30625321
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Restoring the "young" brain: cortical plasticity induced by inhibitory neuron transplantation.
    Zenonos G; Kim JE
    Neurosurgery; 2010 Jun; 66(6):N22-3. PubMed ID: 20495417
    [No Abstract]   [Full Text] [Related]  

  • 37. Activity-dependent regulation of receptive field properties of cat area 17 by supervised Hebbian learning.
    Frégnac Y; Shulz DE
    J Neurobiol; 1999 Oct; 41(1):69-82. PubMed ID: 10504194
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spike-timing-dependent plasticity of neocortical excitatory synapses on inhibitory interneurons depends on target cell type.
    Lu JT; Li CY; Zhao JP; Poo MM; Zhang XH
    J Neurosci; 2007 Sep; 27(36):9711-20. PubMed ID: 17804631
    [TBL] [Abstract][Full Text] [Related]  

  • 39. GABA through the ages: regulation of cortical function and plasticity by inhibitory interneurons.
    Lehmann K; Steinecke A; Bolz J
    Neural Plast; 2012; 2012():892784. PubMed ID: 22792496
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibition by Somatostatin Interneurons in Olfactory Cortex.
    Large AM; Kunz NA; Mielo SL; Oswald AM
    Front Neural Circuits; 2016; 10():62. PubMed ID: 27582691
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.