These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
422 related articles for article (PubMed ID: 27193349)
21. ZnO nanoparticle-based seed priming modulates early growth and enhances physio-biochemical and metabolic profiles of fragrant rice against cadmium toxicity. Li Y; Liang L; Li W; Ashraf U; Ma L; Tang X; Pan S; Tian H; Mo Z J Nanobiotechnology; 2021 Mar; 19(1):75. PubMed ID: 33731120 [TBL] [Abstract][Full Text] [Related]
22. Astaxanthin and its gold nanoparticles mitigate cadmium toxicity in rice by inhibiting cadmium translocation and uptake. Dai S; Wang B; Song Y; Xie Z; Li C; Li S; Huang Y; Jiang M Sci Total Environ; 2021 Sep; 786():147496. PubMed ID: 33984703 [TBL] [Abstract][Full Text] [Related]
23. Terminalia arjuna bark extract alleviates nickel toxicity by suppressing its uptake and modulating antioxidative defence in rice seedlings. Rajpoot R; Rani A; Srivastava RK; Pandey P; Dubey RS Protoplasma; 2016 Nov; 253(6):1449-1462. PubMed ID: 26497693 [TBL] [Abstract][Full Text] [Related]
25. Liquid assisted pulsed laser ablation synthesized copper oxide nanoparticles (CuO-NPs) and their differential impact on rice seedlings. Tiwari PK; Shweta ; Singh AK; Singh VP; Prasad SM; Ramawat N; Tripathi DK; Chauhan DK; Rai AK Ecotoxicol Environ Saf; 2019 Jul; 176():321-329. PubMed ID: 30951979 [TBL] [Abstract][Full Text] [Related]
26. Phytostimulatory effect of silver nanoparticles (AgNPs) on rice seedling growth: An insight from antioxidative enzyme activities and gene expression patterns. Gupta SD; Agarwal A; Pradhan S Ecotoxicol Environ Saf; 2018 Oct; 161():624-633. PubMed ID: 29933132 [TBL] [Abstract][Full Text] [Related]
27. Role of Ferrous Sulfate (FeSO Afzal J; Saleem MH; Batool F; Elyamine AM; Rana MS; Shaheen A; El-Esawi MA; Tariq Javed M; Ali Q; Arslan Ashraf M; Hussain GS; Hu C Biomolecules; 2020 Dec; 10(12):. PubMed ID: 33353010 [TBL] [Abstract][Full Text] [Related]
28. Effects of Copper Oxide Nanoparticles on the Growth of Rice ( Yang Z; Xiao Y; Jiao T; Zhang Y; Chen J; Gao Y Int J Environ Res Public Health; 2020 Feb; 17(4):. PubMed ID: 32075321 [TBL] [Abstract][Full Text] [Related]
29. Physio-ultrastructural footprints and iTRAQ-based proteomic approach unravel the role of Piriformospora indica-colonization in counteracting cadmium toxicity in rice. Sagonda T; Adil MF; Sehar S; Rasheed A; Joan HI; Ouyang Y; Shamsi IH Ecotoxicol Environ Saf; 2021 Sep; 220():112390. PubMed ID: 34098428 [TBL] [Abstract][Full Text] [Related]
30. Phytotoxicity and bioaccumulation of zinc oxide nanoparticles in rice (Oryza sativa L.). Chen J; Dou R; Yang Z; You T; Gao X; Wang L Plant Physiol Biochem; 2018 Sep; 130():604-612. PubMed ID: 30121512 [TBL] [Abstract][Full Text] [Related]
31. The decline in ascorbic acid content is associated with cadmium toxicity of rice seedlings. Chao YY; Hong CY; Kao CH Plant Physiol Biochem; 2010 May; 48(5):374-81. PubMed ID: 20144872 [TBL] [Abstract][Full Text] [Related]
32. Alleviated cadmium toxicity in wheat (Triticum aestivum L.) by the coactive role of zinc oxide nanoparticles and plant growth promoting rhizobacteria on TaEIL1 gene expression, biochemical and physiological changes. Sehrish AK; Ahmad S; Nafees M; Mahmood Z; Ali S; Du W; Kashif Naeem M; Guo H Chemosphere; 2024 Sep; 364():143113. PubMed ID: 39151580 [TBL] [Abstract][Full Text] [Related]
33. Effect of exogenous γ-aminobutyric acid on physiological property, antioxidant activity, and cadmium uptake of quinoa seedlings under cadmium stress. Hao XH; Liu KX; Zhang MY Biosci Rep; 2024 Jun; 44(6):. PubMed ID: 38828664 [TBL] [Abstract][Full Text] [Related]
34. Calcium amendment improved the performance of fragrant rice and reduced metal uptake under cadmium toxicity. Kanu AS; Ashraf U; Mo Z; Sabir SU; Baggie I; Charley CS; Tang X Environ Sci Pollut Res Int; 2019 Aug; 26(24):24748-24757. PubMed ID: 31240656 [TBL] [Abstract][Full Text] [Related]
35. Titanium dioxide nanoparticles mitigate cadmium toxicity in Coriandrum sativum L. through modulating antioxidant system, stress markers and reducing cadmium uptake. Sardar R; Ahmed S; Yasin NA Environ Pollut; 2022 Jan; 292(Pt A):118373. PubMed ID: 34662592 [TBL] [Abstract][Full Text] [Related]
36. Co-application of 6-ketone type brassinosteroid and metal chelator alleviates cadmium toxicity in B. juncea L. Kaur R; Yadav P; Thukral AK; Walia A; Bhardwaj R Environ Sci Pollut Res Int; 2017 Jan; 24(1):685-700. PubMed ID: 27752946 [TBL] [Abstract][Full Text] [Related]
37. Foliar application of aspartic acid lowers cadmium uptake and Cd-induced oxidative stress in rice under Cd stress. Rizwan M; Ali S; Zaheer Akbar M; Shakoor MB; Mahmood A; Ishaque W; Hussain A Environ Sci Pollut Res Int; 2017 Sep; 24(27):21938-21947. PubMed ID: 28780693 [TBL] [Abstract][Full Text] [Related]
38. Effect of Low-Dose Nano Titanium Dioxide Intervention on Cd Uptake and Stress Enzymes Activity in Cd-Stressed Cowpea [Vigna unguiculata (L.) Walp] Plants. Ogunkunle CO; Gambari H; Agbaje F; Okoro HK; Asogwa NT; Vishwakarma V; Fatoba PO Bull Environ Contam Toxicol; 2020 May; 104(5):619-626. PubMed ID: 32172338 [TBL] [Abstract][Full Text] [Related]
39. Coordinated effects of lead toxicity and nutrient deprivation on growth, oxidative status, and elemental composition of primed and non-primed rice seedlings. Khan F; Hussain S; Tanveer M; Khan S; Hussain HA; Iqbal B; Geng M Environ Sci Pollut Res Int; 2018 Jul; 25(21):21185-21194. PubMed ID: 29774513 [TBL] [Abstract][Full Text] [Related]
40. Nostoc entophytum cell response to cadmium exposure: A possible role of chaperon proteins GroEl and HtpG in cadmium-induced stress. Alidoust L; Zahiri HS; Maleki H; Soltani N; Vali H; Noghabi KA Ecotoxicol Environ Saf; 2019 Mar; 169():40-49. PubMed ID: 30419505 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]