These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 27193513)
1. Revealing oxidative damage to enzymes of carbohydrate metabolism in yeast: An integration of 2D DIGE, quantitative proteomics, and bioinformatics. Boone CH; Grove RA; Adamcova D; Braga CP; Adamec J Proteomics; 2016 Jul; 16(13):1889-903. PubMed ID: 27193513 [TBL] [Abstract][Full Text] [Related]
2. Oxidative stress, metabolomics profiling, and mechanism of local anesthetic induced cell death in yeast. Boone CHT; Grove RA; Adamcova D; Seravalli J; Adamec J Redox Biol; 2017 Aug; 12():139-149. PubMed ID: 28236766 [TBL] [Abstract][Full Text] [Related]
3. Quantitative differential proteomics of yeast extracellular matrix: there is more to it than meets the eye. Faria-Oliveira F; Carvalho J; Ferreira C; Hernáez ML; Gil C; Lucas C BMC Microbiol; 2015 Nov; 15():271. PubMed ID: 26608260 [TBL] [Abstract][Full Text] [Related]
4. Insight into the molecular mechanisms of propolis activity using a subcellular proteomic approach. Petelinc T; Polak T; Jamnik P J Agric Food Chem; 2013 Nov; 61(47):11502-10. PubMed ID: 24195611 [TBL] [Abstract][Full Text] [Related]
5. Hydrogen peroxide-induced carbonylation of key metabolic enzymes in Saccharomyces cerevisiae: the involvement of the oxidative stress response regulators Yap1 and Skn7. Costa VM; Amorim MA; Quintanilha A; Moradas-Ferreira P Free Radic Biol Med; 2002 Dec; 33(11):1507-15. PubMed ID: 12446208 [TBL] [Abstract][Full Text] [Related]
6. [Preliminary proteome analysis for Saccharomyces cerevisiae under different culturing conditions]. Zhang HM; Yao SJ; Peng LF; Shimizu K Sheng Wu Gong Cheng Xue Bao; 2004 May; 20(3):398-402. PubMed ID: 15971613 [TBL] [Abstract][Full Text] [Related]
7. Stuck at work? Quantitative proteomics of environmental wine yeast strains reveals the natural mechanism of overcoming stuck fermentation. Szopinska A; Christ E; Planchon S; König H; Evers D; Renaut J Proteomics; 2016 Feb; 16(4):593-608. PubMed ID: 26763469 [TBL] [Abstract][Full Text] [Related]
8. Simultaneous Two-Dimensional Difference Gel Electrophoresis (2D-DIGE) Analysis of Two Distinct Proteomes. Aquino A; Guest PC; Martins-de-Souza D Methods Mol Biol; 2017; 1546():205-212. PubMed ID: 27896770 [TBL] [Abstract][Full Text] [Related]
9. Induction of energy metabolism related enzymes in yeast Saccharomyces cerevisiae exposed to ibogaine is adaptation to acute decrease in ATP energy pool. Paskulin R; Jamnik P; Obermajer N; Slavić M; Strukelj B Eur J Pharmacol; 2010 Feb; 627(1-3):131-5. PubMed ID: 19853595 [TBL] [Abstract][Full Text] [Related]
10. Applications of Difference Gel Electrophoresis (DIGE) in the Study of Microorganisms. Trautwein K; Rabus R Methods Mol Biol; 2018; 1841():95-112. PubMed ID: 30259482 [TBL] [Abstract][Full Text] [Related]
11. Copper-induced oxidative stress in Saccharomyces cerevisiae targets enzymes of the glycolytic pathway. Shanmuganathan A; Avery SV; Willetts SA; Houghton JE FEBS Lett; 2004 Jan; 556(1-3):253-9. PubMed ID: 14706859 [TBL] [Abstract][Full Text] [Related]
12. Proteomic and Real-Time PCR analyses of Saccharomyces cerevisiae VL3 exposed to microcystin-LR reveals a set of protein alterations transversal to several eukaryotic models. Valério E; Campos A; Osório H; Vasconcelos V Toxicon; 2016 Mar; 112():22-8. PubMed ID: 26806210 [TBL] [Abstract][Full Text] [Related]
13. The temporal analysis of yeast exponential phase using shotgun proteomics as a fermentation monitoring technique. Huang EL; Orsat V; Shah MB; Hettich RL; VerBerkmoes NC; Lefsrud MG J Proteomics; 2012 Sep; 75(17):5206-14. PubMed ID: 22705714 [TBL] [Abstract][Full Text] [Related]