These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 27193855)
1. Imaging Mitosis in the Moss Physcomitrella patens. Yamada M; Miki T; Goshima G Methods Mol Biol; 2016; 1413():263-82. PubMed ID: 27193855 [TBL] [Abstract][Full Text] [Related]
2. Live Cell Microscopy-Based RNAi Screening in the Moss Physcomitrella patens. Miki T; Nakaoka Y; Goshima G Methods Mol Biol; 2016; 1470():225-46. PubMed ID: 27581297 [TBL] [Abstract][Full Text] [Related]
3. An inducible RNA interference system in Physcomitrella patens reveals a dominant role of augmin in phragmoplast microtubule generation. Nakaoka Y; Miki T; Fujioka R; Uehara R; Tomioka A; Obuse C; Kubo M; Hiwatashi Y; Goshima G Plant Cell; 2012 Apr; 24(4):1478-93. PubMed ID: 22505727 [TBL] [Abstract][Full Text] [Related]
4. NACK kinesin is required for metaphase chromosome alignment and cytokinesis in the moss Physcomitrella patens. Naito H; Goshima G Cell Struct Funct; 2015; 40(1):31-41. PubMed ID: 25748359 [TBL] [Abstract][Full Text] [Related]
5. RNA interference in the moss Physcomitrella patens. Bezanilla M; Pan A; Quatrano RS Plant Physiol; 2003 Oct; 133(2):470-4. PubMed ID: 14555775 [TBL] [Abstract][Full Text] [Related]
6. Myosin XI localizes at the mitotic spindle and along the cell plate during plant cell division in Physcomitrella patens. Sun H; Furt F; Vidali L Biochem Biophys Res Commun; 2018 Nov; 506(2):409-421. PubMed ID: 29339158 [TBL] [Abstract][Full Text] [Related]
7. Endogenous localizome identifies 43 mitotic kinesins in a plant cell. Miki T; Naito H; Nishina M; Goshima G Proc Natl Acad Sci U S A; 2014 Mar; 111(11):E1053-61. PubMed ID: 24591632 [TBL] [Abstract][Full Text] [Related]
8. RNAi screening identifies the armadillo repeat-containing kinesins responsible for microtubule-dependent nuclear positioning in Physcomitrella patens. Miki T; Nishina M; Goshima G Plant Cell Physiol; 2015 Apr; 56(4):737-49. PubMed ID: 25588389 [TBL] [Abstract][Full Text] [Related]
9. Microtubules regulate dynamic organization of vacuoles in Physcomitrella patens. Oda Y; Hirata A; Sano T; Fujita T; Hiwatashi Y; Sato Y; Kadota A; Hasebe M; Hasezawa S Plant Cell Physiol; 2009 Apr; 50(4):855-68. PubMed ID: 19251746 [TBL] [Abstract][Full Text] [Related]
10. Knocking out the wall: protocols for gene targeting in Physcomitrella patens. Roberts AW; Dimos CS; Budziszek MJ; Goss CA; Lai V Methods Mol Biol; 2011; 715():273-90. PubMed ID: 21222091 [TBL] [Abstract][Full Text] [Related]
11. An RNAi system in Physcomitrella patens with an internal marker for silencing allows for rapid identification of loss of function phenotypes. Bezanilla M; Perroud PF; Pan A; Klueh P; Quatrano RS Plant Biol (Stuttg); 2005 May; 7(3):251-7. PubMed ID: 15912444 [TBL] [Abstract][Full Text] [Related]
12. Complete chloroplast DNA sequence of the moss Physcomitrella patens: evidence for the loss and relocation of rpoA from the chloroplast to the nucleus. Sugiura C; Kobayashi Y; Aoki S; Sugita C; Sugita M Nucleic Acids Res; 2003 Sep; 31(18):5324-31. PubMed ID: 12954768 [TBL] [Abstract][Full Text] [Related]
13. Protein encoding genes in an ancient plant: analysis of codon usage, retained genes and splice sites in a moss, Physcomitrella patens. Rensing SA; Fritzowsky D; Lang D; Reski R BMC Genomics; 2005 Mar; 6():43. PubMed ID: 15784153 [TBL] [Abstract][Full Text] [Related]
14. [The moss Physcomitrella patens, a new model system for functional genomics]. Dong W; Li W; Guo GX; Zheng GC Yi Chuan; 2004 Jul; 26(4):560-6. PubMed ID: 15640062 [TBL] [Abstract][Full Text] [Related]
15. Kinesin-13 and Kinesin-8 Function during Cell Growth and Division in the Moss Leong SY; Edzuka T; Goshima G; Yamada M Plant Cell; 2020 Mar; 32(3):683-702. PubMed ID: 31919299 [TBL] [Abstract][Full Text] [Related]
16. Multiple kinesin-14 family members drive microtubule minus end-directed transport in plant cells. Yamada M; Tanaka-Takiguchi Y; Hayashi M; Nishina M; Goshima G J Cell Biol; 2017 Jun; 216(6):1705-1714. PubMed ID: 28442535 [TBL] [Abstract][Full Text] [Related]
17. In vivo visualization of F-actin structures during the development of the moss Physcomitrella patens. Finka A; Schaefer DG; Saidi Y; Goloubinoff P; Zrÿd JP New Phytol; 2007; 174(1):63-76. PubMed ID: 17335498 [TBL] [Abstract][Full Text] [Related]
18. Automated live microscopy to study mitotic gene function in fluorescent reporter cell lines. Schmitz MH; Gerlich DW Methods Mol Biol; 2009; 545():113-34. PubMed ID: 19475385 [TBL] [Abstract][Full Text] [Related]
19. The moss Physcomitrella patens: methods and tools from cultivation to targeted analysis of gene function. Strotbek C; Krinninger S; Frank W Int J Dev Biol; 2013; 57(6-8):553-64. PubMed ID: 24166438 [TBL] [Abstract][Full Text] [Related]
20. MICROTUBULE-ASSOCIATED PROTEIN65 is essential for maintenance of phragmoplast bipolarity and formation of the cell plate in Physcomitrella patens. Kosetsu K; de Keijzer J; Janson ME; Goshima G Plant Cell; 2013 Nov; 25(11):4479-92. PubMed ID: 24272487 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]