These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 27193956)
1. Population Dynamics and Temperature-Dependent Development of Chrysomphalus aonidum (L.) to Aid Sustainable Pest Management Decisions. Campolo O; Malacrinò A; Laudani F; Maione V; Zappalà L; Palmeri V Neotrop Entomol; 2014 Oct; 43(5):453-64. PubMed ID: 27193956 [TBL] [Abstract][Full Text] [Related]
2. Predation of Florida red scale Al-Shami S; Qureshi JA Bull Entomol Res; 2021 Nov; ():1-8. PubMed ID: 34743772 [TBL] [Abstract][Full Text] [Related]
3. Optimizing Nesidiocoris tenuis (Hemiptera: Miridae) as a biological control agent: mathematical models for predicting its development as a function of temperature. Martínez-García H; Román-Fernández LR; Sáenz-Romo MG; Pérez-Moreno I; Marco-Mancebón VS Bull Entomol Res; 2016 Apr; 106(2):215-24. PubMed ID: 26700327 [TBL] [Abstract][Full Text] [Related]
4. Temperature-Dependent Development of Oligota flavicornis (Coleoptera: Staphylinidae) Preying on Tetranychus cinnabarinus (Acarina: Tetranychidae). Lin T; You Y; Zeng ZH; Lin S; Chen YX; Cai HJ; Zhao JW; Wei H J Econ Entomol; 2017 Dec; 110(6):2334-2341. PubMed ID: 29220518 [TBL] [Abstract][Full Text] [Related]
5. Temperature-dependent models of development and survival of an insect pest of African tropical highlands, the coffee antestia bug Antestiopsis thunbergii (Hemiptera: Pentatomidae). Azrag AGA; Murungi LK; Tonnang HEZ; Mwenda D; Babin R J Therm Biol; 2017 Dec; 70(Pt B):27-36. PubMed ID: 29108555 [TBL] [Abstract][Full Text] [Related]
6. Modeling the Phenology of Asian Citrus Psyllid (Hemiptera: Liviidae) in Urban Southern California: Effects of Environment, Habitat, and Natural Enemies. Milosavljevic I; Amrich R; Strode V; Hoddle MS Environ Entomol; 2018 Apr; 47(2):233-243. PubMed ID: 29373671 [TBL] [Abstract][Full Text] [Related]
7. Modelling population dynamics of Orius laevigatus and O. albidipennis (Hemiptera: Anthocoridae) to optimize their use as biological control agents of Frankliniella occidentalis (Thysanoptera: Thripidae). Sanchez JA; Sanchez JA; Lacasa A Bull Entomol Res; 2002 Feb; 92(1):77-88. PubMed ID: 12020365 [TBL] [Abstract][Full Text] [Related]
8. Temperature Thresholds and Thermal Requirements for Development and Survival of Dysmicoccus brevipes (Hemiptera: Pseudococcidae) on Table Grapes. Bertin A; Lerin S; Botton M; Parra JRP Neotrop Entomol; 2019 Feb; 48(1):71-77. PubMed ID: 30051261 [TBL] [Abstract][Full Text] [Related]
9. Modeling Temperature-Dependent Development of Glyphodes pyloalis (Lepidoptera: Pyralidae). Moallem Z; Karimi-Malati A; Sahragard A; Zibaee A J Insect Sci; 2017 Jan; 17(1):. PubMed ID: 28423429 [TBL] [Abstract][Full Text] [Related]
10. Temperature-Dependent Development and Survival of Giant Whitefly Aleurodicus dugesii (Hemiptera: Aleyrodidae) Under Constant Temperatures. Schoeller EN; Redak RA Environ Entomol; 2018 Dec; 47(6):1586-1595. PubMed ID: 30188988 [TBL] [Abstract][Full Text] [Related]
11. A Temperature-Dependent Phenology Model for Liriomyza huidobrensis (Diptera: Agromyzidae). Mujica N; Sporleder M; Carhuapoma P; Kroschel J J Econ Entomol; 2017 Jun; 110(3):1333-1344. PubMed ID: 28334271 [TBL] [Abstract][Full Text] [Related]
12. Thermal Requirements and Development Response to Constant Temperatures by Nesidiocoris tenuis (Hemiptera: Miridae), and Implications for Biological Control. Mirhosseini MA; Fathipour Y; Soufbaf M; Reddy GVP Environ Entomol; 2018 Apr; 47(2):467-476. PubMed ID: 29522094 [TBL] [Abstract][Full Text] [Related]
13. Temperature-dependent development of Elasmopalpus lignosellus (Lepidoptera: Pyralidae) on sugarcane under laboratory conditions. Sandhu HS; Nuessly GS; Webb SE; Cherry RH; Gilbert RA Environ Entomol; 2010 Jun; 39(3):1012-20. PubMed ID: 20550817 [TBL] [Abstract][Full Text] [Related]
14. Bioclimatic thresholds, thermal constants and survival of mealybug, Phenacoccus solenopsis (hemiptera: pseudococcidae) in response to constant temperatures on hibiscus. Sreedevi G; Prasad YG; Prabhakar M; Rao GR; Vennila S; Venkateswarlu B PLoS One; 2013; 8(9):e75636. PubMed ID: 24086597 [TBL] [Abstract][Full Text] [Related]
15. Effects of Temperatures on Immature Development and Survival of the Invasive Stink Bug (Hemiptera: Pentatomidae). Reed DA; Ganjisaffar F; Palumbo JC; Perring TM J Econ Entomol; 2017 Dec; 110(6):2497-2503. PubMed ID: 29121206 [TBL] [Abstract][Full Text] [Related]
16. Temperature-dependent development of diapausing larvae of Chilo partellus (Swinhoe) (Lepidoptera: Crambidae). Dhillon MK; Hasan F J Therm Biol; 2017 Oct; 69():213-220. PubMed ID: 29037385 [TBL] [Abstract][Full Text] [Related]
17. Novel Temperature-Dependent Development Rate Models for Postdiapause Egg Eclosion of Three Important Arthropod Pests Found in Commercial Christmas Tree Plantations of Southern Québec, Canada. Doherty JF; Guay JF; Cloutier C Environ Entomol; 2018 Jun; 47(3):715-724. PubMed ID: 29878160 [TBL] [Abstract][Full Text] [Related]
18. Mathematical Models for Predicting Development of Orius majusculus (Heteroptera: Anthocoridae) and Its Applicability to Biological Control. Martínez-García H; Aragón-Sánchez M; Sáenz-Romo MG; Román-Fernández LR; Veas-Bernal A; Marco-Mancebón VS; Pérez-Moreno I J Econ Entomol; 2018 Aug; 111(4):1904-1914. PubMed ID: 29788072 [TBL] [Abstract][Full Text] [Related]
19. Dispersion patterns and sampling plans for Diaphorina citri (Hemiptera: Psyllidae) in citrus. Sétamou M; Flores D; French JV; Hall DG J Econ Entomol; 2008 Aug; 101(4):1478-87. PubMed ID: 18767763 [TBL] [Abstract][Full Text] [Related]
20. Thermal requirement and development of Liriomyza sativae (Diptera: Agromyzidae) on cucumber. Haghani M; Fathipour Y; Talebi AA; Baniameri V J Econ Entomol; 2007 Apr; 100(2):350-6. PubMed ID: 17461057 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]