These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 27194358)

  • 41. Droplet-based microfluidics: enabling impact on drug discovery.
    Dressler OJ; Maceiczyk RM; Chang SI; deMello AJ
    J Biomol Screen; 2014 Apr; 19(4):483-96. PubMed ID: 24241711
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (μPADs) - A review.
    Morbioli GG; Mazzu-Nascimento T; Stockton AM; Carrilho E
    Anal Chim Acta; 2017 Jun; 970():1-22. PubMed ID: 28433054
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A review on continuous-flow microfluidic PCR in droplets: Advances, challenges and future.
    Zhang Y; Jiang HR
    Anal Chim Acta; 2016 Mar; 914():7-16. PubMed ID: 26965323
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Droplet-based microfluidics in drug discovery, transcriptomics and high-throughput molecular genetics.
    Shembekar N; Chaipan C; Utharala R; Merten CA
    Lab Chip; 2016 Apr; 16(8):1314-31. PubMed ID: 27025767
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Materials for microfluidic chip fabrication.
    Ren K; Zhou J; Wu H
    Acc Chem Res; 2013 Nov; 46(11):2396-406. PubMed ID: 24245999
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cell-based assays: fuelling drug discovery.
    Michelini E; Cevenini L; Mezzanotte L; Coppa A; Roda A
    Anal Bioanal Chem; 2010 Sep; 398(1):227-38. PubMed ID: 20623273
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Successes and future outlook for microfluidics-based cardiovascular drug discovery.
    Skommer J; Wlodkowic D
    Expert Opin Drug Discov; 2015 Mar; 10(3):231-44. PubMed ID: 25672221
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microfluidics for drug discovery and development: from target selection to product lifecycle management.
    Kang L; Chung BG; Langer R; Khademhosseini A
    Drug Discov Today; 2008 Jan; 13(1-2):1-13. PubMed ID: 18190858
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A review of sorting, separation and isolation of cells and microbeads for biomedical applications: microfluidic approaches.
    Dalili A; Samiei E; Hoorfar M
    Analyst; 2018 Dec; 144(1):87-113. PubMed ID: 30402633
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A versatile valving toolkit for automating fluidic operations in paper microfluidic devices.
    Toley BJ; Wang JA; Gupta M; Buser JR; Lafleur LK; Lutz BR; Fu E; Yager P
    Lab Chip; 2015 Mar; 15(6):1432-44. PubMed ID: 25606810
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microfluidics as a Novel Tool for Biological and Toxicological Assays in Drug Discovery Processes: Focus on Microchip Electrophoresis.
    Caruso G; Musso N; Grasso M; Costantino A; Lazzarino G; Tascedda F; Gulisano M; Lunte SM; Caraci F
    Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32549277
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Large-Volume Microfluidic Cell Sorting for Biomedical Applications.
    Warkiani ME; Wu L; Tay AK; Han J
    Annu Rev Biomed Eng; 2015; 17():1-34. PubMed ID: 26194427
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Pressure-driven microfluidic perfusion culture device for integrated dose-response assays.
    Hattori K; Sugiura S; Kanamori T
    J Lab Autom; 2013 Dec; 18(6):437-45. PubMed ID: 24014544
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Laser Inscription of Microfluidic Devices for Biological Assays.
    Alqurashi T; Alnufaili M; Hassan MU; Aloufi S; Yetisen AK; Butt H
    ACS Appl Mater Interfaces; 2019 Apr; 11(13):12253-12260. PubMed ID: 30868879
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microfluidic cell culture systems for drug research.
    Wu MH; Huang SB; Lee GB
    Lab Chip; 2010 Apr; 10(8):939-56. PubMed ID: 20358102
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Recent development in software and automation tools for high-throughput discovery bioanalysis.
    Shou WZ; Zhang J
    Bioanalysis; 2012 May; 4(9):1097-109. PubMed ID: 22612689
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microfluidics contribution to pharmaceutical sciences: From drug discovery to post marketing product management.
    Nys G; Fillet M
    J Pharm Biomed Anal; 2018 Sep; 159():348-362. PubMed ID: 30032003
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microfluidic platforms for lab-on-a-chip applications.
    Haeberle S; Zengerle R
    Lab Chip; 2007 Sep; 7(9):1094-110. PubMed ID: 17713606
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications.
    Capretto L; Carugo D; Mazzitelli S; Nastruzzi C; Zhang X
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1496-532. PubMed ID: 23933616
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Antibodies, repertoires and microdevices in antibody discovery and characterization.
    Schlotheuber LJ; Lüchtefeld I; Eyer K
    Lab Chip; 2024 Feb; 24(5):1207-1225. PubMed ID: 38165819
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.