These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 27194417)

  • 1. Synthesis of advanced aluminide intermetallic coatings by low-energy Al-ion radiation.
    Shen M; Gu Y; Zhao P; Zhu S; Wang F
    Sci Rep; 2016 May; 6():26535. PubMed ID: 27194417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental Study of the Thermally Grown Oxide and Interface of Thermal Barrier Coatings Using TEM In-Situ Heating.
    Zhang H; Peng R; Zhao J; Fan C; Feng W; Liu Z
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deformation Prediction Theory of Thermal Barrier Coatings near Cooling Holes under Thermal Cycling.
    Wang JX; Sun HT; Gong QT; Li FX; Li ZZ
    ACS Omega; 2023 Apr; 8(14):13048-13058. PubMed ID: 37065062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tensile stress and creep in thermally grown oxide.
    Veal BW; Paulikas AP; Hou PY
    Nat Mater; 2006 May; 5(5):349-51. PubMed ID: 16604078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron Microscopy Characterization of the High Temperature Degradation of the Aluminide Layer on Turbine Blades Made of a Nickel Superalloy.
    Bogdan M; Zieliński W; Płociński T; Kurzydłowski KJ
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32708221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive Understanding of the Effect of TGO Growth Modes on Thermal Barrier Coating Failure Based on a Simulation.
    Qiao D; Man J; Yan W; Xue B; Bian X; Zeng W
    Materials (Basel); 2023 Dec; 17(1):. PubMed ID: 38204032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deposition of Aluminide Coatings onto AISI 304L Steel for High Temperature Applications.
    Anwer Z; Tufail M; Chandio AD
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the degradation of plasma sprayed thermal barrier coatings using nano-indentation.
    Kim DJ; Cho SK; Choi JH; Koo JM; Seok CS; Kim MY
    J Nanosci Nanotechnol; 2009 Dec; 9(12):7271-7. PubMed ID: 19908771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasonic characterization of thermally grown oxide in thermal barrier coating by reflection coefficient amplitude spectrum.
    Ma Z; Zhao Y; Luo Z; Lin L
    Ultrasonics; 2014 Apr; 54(4):1005-9. PubMed ID: 24359869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microstructure and thermal behaviour of plasma sprayed zirconia/alumina composite coating.
    Kobayashi A; Ando Y; Kurokawa K; Hejwowski T
    J Nanosci Nanotechnol; 2011 Oct; 11(10):8853-8. PubMed ID: 22400271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Pt on Stress Rupture Properties of Pt-Modified Nickel Aluminide Coatings at 1100 °C.
    Xue Y; Yin B; Deng P; Deng C; Mao J; Qiu Z; Zeng D; Liu M
    Materials (Basel); 2024 Mar; 17(7):. PubMed ID: 38612036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal Barrier Stability and Wear Behavior of CVD Deposited Aluminide Coatings for MAR 247 Nickel Superalloy.
    Kukla D; Kopec M; Kowalewski ZL; Politis DJ; Jóźwiak S; Senderowski C
    Materials (Basel); 2020 Sep; 13(17):. PubMed ID: 32883042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Influence of Pd and Zr Co-Doping on the Microstructure and Oxidation Resistance of Aluminide Coatings on the CMSX-4 Nickel Superalloy.
    Romanowska J; Morgiel J; Zagula-Yavorska M
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progress in Novel Electrodeposited Bond Coats for Thermal Barrier Coating Systems.
    Maniam KK; Paul S
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of corrosion layers on protective coatings and high temperature materials in simulated service environments of modern power plants using SNMS, SIMS, SEM, TEM, RBS and X-ray diffraction studies.
    Nickel H; Quadakkers WJ; Singheiser L
    Anal Bioanal Chem; 2002 Oct; 374(4):581-7. PubMed ID: 12397473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of laser remelting on the tribological performance of thermal barrier coatings.
    Rico A; Sevillano F; Múnez CJ; López MD; Utrilla V; Rodríguez J; Poza P
    J Nanosci Nanotechnol; 2012 Jun; 12(6):4984-90. PubMed ID: 22905563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of nonmodified and rhodium modified aluminide coating deposited on CMSX 4 superalloy.
    Zagula-Yavorska M; Wierzbińska M; Gancarczyk K; Sieniawski J
    J Microsc; 2016 Jul; 263(1):118-23. PubMed ID: 27018853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioinspired Smart Anticorrosive Coatings with an Emergency-Response Closing Function.
    Ding J; Zhao H; Shao Z; Yu H
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42646-42653. PubMed ID: 31647634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal property and failure behavior of LaSmZrO thermal barrier coatings by EB-PVD.
    Shen Z; Liu G; Zhang R; Dai J; He L; Mu R
    iScience; 2022 Apr; 25(4):104106. PubMed ID: 35402886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembling of atomic vacancies at an oxide/intermetallic alloy interface.
    Maurice V; Despert G; Zanna S; Bacos MP; Marcus P
    Nat Mater; 2004 Oct; 3(10):687-91. PubMed ID: 15378049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.