These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 27194799)

  • 1. Big insights from small volumes: deciphering complex leukocyte behaviors using microfluidics.
    Irimia D; Ellett F
    J Leukoc Biol; 2016 Aug; 100(2):291-304. PubMed ID: 27194799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput screening approaches and combinatorial development of biomaterials using microfluidics.
    Barata D; van Blitterswijk C; Habibovic P
    Acta Biomater; 2016 Apr; 34():1-20. PubMed ID: 26361719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Droplet-based microfluidics: enabling impact on drug discovery.
    Dressler OJ; Maceiczyk RM; Chang SI; deMello AJ
    J Biomol Screen; 2014 Apr; 19(4):483-96. PubMed ID: 24241711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of Leukocyte Behaviors on Microfluidic Chips.
    Liu Y; Yang Q; Cao L; Xu F
    Adv Healthc Mater; 2019 Feb; 8(4):e1801406. PubMed ID: 30672149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic chambers for monitoring leukocyte trafficking and humanized nano-proresolving medicines interactions.
    Jones CN; Dalli J; Dimisko L; Wong E; Serhan CN; Irimia D
    Proc Natl Acad Sci U S A; 2012 Dec; 109(50):20560-5. PubMed ID: 23185003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vascular mimetics based on microfluidics for imaging the leukocyte--endothelial inflammatory response.
    Schaff UY; Xing MM; Lin KK; Pan N; Jeon NL; Simon SI
    Lab Chip; 2007 Apr; 7(4):448-56. PubMed ID: 17389960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The leukocyte-stiffening property of plasma in early acute respiratory distress syndrome (ARDS) revealed by a microfluidic single-cell study: the role of cytokines and protection with antibodies.
    Preira P; Forel JM; Robert P; Nègre P; Biarnes-Pelicot M; Xeridat F; Bongrand P; Papazian L; Theodoly O
    Crit Care; 2016 Jan; 20():8. PubMed ID: 26757701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating Immunology and Microfluidics for Single Immune Cell Analysis.
    Sinha N; Subedi N; Tel J
    Front Immunol; 2018; 9():2373. PubMed ID: 30459757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endothelial cell monolayer-based microfluidic systems mimicking complex in vivo microenvironments for the study of leukocyte dynamics in inflamed blood vessels.
    Lee J; Huh HK; Park SH; Lee SJ; Doh J
    Methods Cell Biol; 2018; 146():23-42. PubMed ID: 30037464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multilayer architecture microfluidic network array for combinatorial drug testing on 3D-cultured cells.
    Chang HC; Lin CH; Juang D; Wu HW; Lee CY; Chen C; Hsu CH
    Biofabrication; 2019 Jun; 11(3):035024. PubMed ID: 31051482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct numerical simulation of single leukocyte deformation in microchannel flow for disease diagnosis.
    Luo ZY; Xu F; Lu TJ; Bai BF
    J Med Syst; 2011 Oct; 35(5):869-76. PubMed ID: 20703694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of a Microfluidic Chip for Magnetic-Activated Sorting of One-Bead-One-Compound Libraries.
    Cho CF; Lee K; Speranza MC; Bononi FC; Viapiano MS; Luyt LG; Weissleder R; Chiocca EA; Lee H; Lawler SE
    ACS Comb Sci; 2016 Jun; 18(6):271-8. PubMed ID: 27124678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disassembly of endothelial and epithelial junctions during leukocyte transmigration.
    Schnoor M; Parkos CA
    Front Biosci; 2008 May; 13():6638-52. PubMed ID: 18508684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chapter 15. A microfluidics-based method for chemoattractant gradients.
    Lin F
    Methods Enzymol; 2009; 461():333-47. PubMed ID: 19480926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic Platform to Quantify Neutrophil Migratory Decision-Making.
    Boribong BP; Rahimi A; Jones CN
    Methods Mol Biol; 2019; 1960():113-122. PubMed ID: 30798526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of Droplet Microfluidics Enabling High-Throughput Single-Cell Analysis.
    Wen N; Zhao Z; Fan B; Chen D; Men D; Wang J; Chen J
    Molecules; 2016 Jul; 21(7):. PubMed ID: 27399651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomimetic autoseparation of leukocytes from whole blood in a microfluidic device.
    Shevkoplyas SS; Yoshida T; Munn LL; Bitensky MW
    Anal Chem; 2005 Feb; 77(3):933-7. PubMed ID: 15679363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidics for Protein Biophysics.
    Charmet J; Arosio P; Knowles TPJ
    J Mol Biol; 2018 Mar; 430(5):565-580. PubMed ID: 29289566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Droplet microfluidics for high-sensitivity and high-throughput detection and screening of disease biomarkers.
    Kaushik AM; Hsieh K; Wang TH
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2018 Nov; 10(6):e1522. PubMed ID: 29797414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The evolution of chemotaxis assays from static models to physiologically relevant platforms.
    Toetsch S; Olwell P; Prina-Mello A; Volkov Y
    Integr Biol (Camb); 2009 Feb; 1(2):170-81. PubMed ID: 20023801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.