These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 27194799)

  • 41. Application of microfluidic systems in management of head and neck squamous cell carcinoma.
    Tanweer F; Green VL; Stafford ND; Greenman J
    Head Neck; 2013 May; 35(5):756-63. PubMed ID: 22307947
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Zooming in to see the bigger picture: microfluidic and nanofabrication tools to study bacteria.
    Hol FJ; Dekker C
    Science; 2014 Oct; 346(6208):1251821. PubMed ID: 25342809
    [TBL] [Abstract][Full Text] [Related]  

  • 43. MEMS and microfluidics for diagnostics devices.
    Rosen Y; Gurman P
    Curr Pharm Biotechnol; 2010 Jun; 11(4):366-75. PubMed ID: 20199381
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Recent advances in electric analysis of cells in microfluidic systems.
    Bao N; Wang J; Lu C
    Anal Bioanal Chem; 2008 Jun; 391(3):933-42. PubMed ID: 18335214
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microfluidic-Nanofiber Hybrid Array for Screening of Cellular Microenvironments.
    Kamei KI; Mashimo Y; Yoshioka M; Tokunaga Y; Fockenberg C; Terada S; Koyama Y; Nakajima M; Shibata-Seki T; Liu L; Akaike T; Kobatake E; How SE; Uesugi M; Chen Y
    Small; 2017 May; 13(18):. PubMed ID: 28272774
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The analytical approach to polydimethylsiloxane microfluidic technology and its biological applications.
    Kartalov EP; Anderson WF; Scherer A
    J Nanosci Nanotechnol; 2006 Aug; 6(8):2265-77. PubMed ID: 17037833
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High-throughput manufacturing of size-tuned liposomes by a new microfluidics method using enhanced statistical tools for characterization.
    Kastner E; Kaur R; Lowry D; Moghaddam B; Wilkinson A; Perrie Y
    Int J Pharm; 2014 Dec; 477(1-2):361-8. PubMed ID: 25455778
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A high-throughput drop microfluidic system for virus culture and analysis.
    Fischer AE; Wu SK; Proescher JB; Rotem A; Chang CB; Zhang H; Tao Y; Mehoke TS; Thielen PM; Kolawole AO; Smith TJ; Wobus CE; Weitz DA; Lin JS; Feldman AB; Wolfe JT
    J Virol Methods; 2015 Mar; 213():111-7. PubMed ID: 25522923
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Droplets and emulsions: very high-throughput screening in biology].
    Baret JC; Taly V; Ryckelynck M; Merten CA; Griffiths AD
    Med Sci (Paris); 2009; 25(6-7):627-32. PubMed ID: 19602361
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Finding the Needle in the Haystack-the Use of Microfluidic Droplet Technology to Identify Vitamin-Secreting Lactic Acid Bacteria.
    Chen J; Vestergaard M; Jensen TG; Shen J; Dufva M; Solem C; Jensen PR
    mBio; 2017 May; 8(3):. PubMed ID: 28559484
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Stem cells in microfluidics.
    van Noort D; Ong SM; Zhang C; Zhang S; Arooz T; Yu H
    Biotechnol Prog; 2009; 25(1):52-60. PubMed ID: 19205022
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microfluidic analysis of oocyte and embryo biomechanical properties to improve outcomes in assisted reproductive technologies.
    Yanez LZ; Camarillo DB
    Mol Hum Reprod; 2017 Apr; 23(4):235-247. PubMed ID: 27932552
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A microfluidics platform for combinatorial drug screening on cancer biopsies.
    Eduati F; Utharala R; Madhavan D; Neumann UP; Longerich T; Cramer T; Saez-Rodriguez J; Merten CA
    Nat Commun; 2018 Jun; 9(1):2434. PubMed ID: 29934552
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A power-free, parallel loading microfluidic reactor array for biochemical screening.
    Liu Y; Li G
    Sci Rep; 2018 Sep; 8(1):13664. PubMed ID: 30209328
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Successes and future outlook for microfluidics-based cardiovascular drug discovery.
    Skommer J; Wlodkowic D
    Expert Opin Drug Discov; 2015 Mar; 10(3):231-44. PubMed ID: 25672221
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spatiotemporal expression dynamics of selectins govern the sequential extravasation of neutrophils and monocytes in the acute inflammatory response.
    Zuchtriegel G; Uhl B; Hessenauer ME; Kurz AR; Rehberg M; Lauber K; Krombach F; Reichel CA
    Arterioscler Thromb Vasc Biol; 2015 Apr; 35(4):899-910. PubMed ID: 25722429
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High-Throughput Separation of White Blood Cells From Whole Blood Using Inertial Microfluidics.
    Zhang J; Yuan D; Sluyter R; Yan S; Zhao Q; Xia H; Tan SH; Nguyen NT; Li W
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1422-1430. PubMed ID: 28866599
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microfluidics: a transformational tool for nanomedicine development and production.
    Garg S; Heuck G; Ip S; Ramsay E
    J Drug Target; 2016 Nov; 24(9):821-835. PubMed ID: 27492254
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis.
    Zhu Z; Yang CJ
    Acc Chem Res; 2017 Jan; 50(1):22-31. PubMed ID: 28029779
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Capturing Cancer: Emerging Microfluidic Technologies for the Capture and Characterization of Circulating Tumor Cells.
    Qian W; Zhang Y; Chen W
    Small; 2015 Aug; 11(32):3850-72. PubMed ID: 25993898
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.