These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 27194821)

  • 1. How to reduce the costs of ornaments without reducing their effectiveness? An example of a mechanism from carotenoid-based plumage.
    Surmacki A; Ragan A; Kosiński Z; Tobółka M; Podkowa P
    Behav Ecol Sociobiol; 2016; 70():695-700. PubMed ID: 27194821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microstructures amplify carotenoid plumage signals in tanagers.
    McCoy DE; Shultz AJ; Vidoudez C; van der Heide E; Dall JE; Trauger SA; Haig D
    Sci Rep; 2021 Apr; 11(1):8582. PubMed ID: 33883641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plumage coloration and social context influence male investment in song.
    Henderson LJ; Brazeal KR; Hahn TP
    Biol Lett; 2018 Jul; 14(7):. PubMed ID: 30021863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Dynamics of infection of Fringilla coelebs chaffinch nestlings with feather mites (Acari: Analgoidea)].
    Mironov SV; Malyshev LL
    Parazitologiia; 2002; 36(5):356-74. PubMed ID: 12481604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex plumages spur rapid color diversification in kingfishers (Aves: Alcedinidae).
    Eliason CM; McCullough JM; Hackett SJ; Andersen MJ
    Elife; 2023 Apr; 12():. PubMed ID: 37083474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lutein-based plumage coloration in songbirds is a consequence of selective pigment incorporation into feathers.
    McGraw KJ; Beebee MD; Hill GE; Parker RS
    Comp Biochem Physiol B Biochem Mol Biol; 2003 Aug; 135(4):689-96. PubMed ID: 12892761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. UV-induced feather color change reflects its porphyrin content.
    Hasegawa M; Arai E; Ito S; Wakamatsu K
    Naturwissenschaften; 2024 Feb; 111(1):6. PubMed ID: 38300300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carotenoid coloration in greenfinches is individually consistent irrespective of foraging ability.
    Karu U; Saks L; Hõrak P
    Physiol Biochem Zool; 2007; 80(6):663-70. PubMed ID: 17910002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synchronizing feather-based measures of corticosterone and carotenoid-dependent signals: what relationships do we expect?
    Fairhurst GD; Dawson RD; van Oort H; Bortolotti GR
    Oecologia; 2014 Mar; 174(3):689-98. PubMed ID: 24233689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific carotenoid pigments in the diet and a bit of oxidative stress in the recipe for producing red carotenoid-based signals.
    García-de Blas E; Mateo R; Alonso-Alvarez C
    PeerJ; 2016; 4():e2237. PubMed ID: 27635308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multifactorial test of the effects of carotenoid access, food intake and parasite load on the production of ornamental feathers and bill coloration in American goldfinches.
    Hill GE; Hood WR; Huggins K
    J Exp Biol; 2009 Apr; 212(Pt 8):1225-33. PubMed ID: 19329755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ancient origins and multiple appearances of carotenoid-pigmented feathers in birds.
    Thomas DB; McGraw KJ; Butler MW; Carrano MT; Madden O; James HF
    Proc Biol Sci; 2014 Aug; 281(1788):20140806. PubMed ID: 24966316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plumage pigment differences underlying the yellow-red differentiation in the Northern Flicker (Colaptes auratus).
    Hudon J; Wiebe KL; Pini E; Stradi R
    Comp Biochem Physiol B Biochem Mol Biol; 2015 May; 183():1-10. PubMed ID: 25575737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An experimental test of the contributions and condition dependence of microstructure and carotenoids in yellow plumage coloration.
    Shawkey MD; Hill GE; McGraw KJ; Hood WR; Huggins K
    Proc Biol Sci; 2006 Dec; 273(1604):2985-91. PubMed ID: 17015356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carotenoid pigments and the selectivity of psittacofulvin-based coloration systems in parrots.
    McGraw KJ; Nogare MC
    Comp Biochem Physiol B Biochem Mol Biol; 2004 Jul; 138(3):229-33. PubMed ID: 15253871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Condition-Dependent Development of Carotenoid-Based and Structural Plumage in Nestling Blue Tits: Males and Females Differ.
    Peters A; Delhey K; Johnsen A; Kempenaers B
    Am Nat; 2007 Jan; 169(S1):S122-S136. PubMed ID: 29517928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free radical exposure creates paler carotenoid-based ornaments: a possible interaction in the expression of black and red traits.
    Alonso-Alvarez C; Galván I
    PLoS One; 2011 Apr; 6(4):e19403. PubMed ID: 21556328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carotenoid Plasma Concentration, Immune Profile, and Plumage Ornamentation of Male Barn Swallows (Hirundo rustica).
    Saino N; Stradi R; Ninni P; Pini E; Møller AP
    Am Nat; 1999 Oct; 154(4):441-448. PubMed ID: 10523490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential accumulation and pigmenting ability of dietary carotenoids in colorful finches.
    McGraw KJ; Hill GE; Navara KJ; Parker RS
    Physiol Biochem Zool; 2004; 77(3):484-91. PubMed ID: 15286921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The evolution of carotenoid-based plumage colours in passerine birds.
    Delhey K; Valcu M; Dale J; Kempenaers B
    J Anim Ecol; 2023 Jan; 92(1):66-77. PubMed ID: 35899818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.