These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 27194953)

  • 21. Elemental analysis of sunflower cataract in Wilson's disease: a study using scanning transmission electron microscopy and energy dispersive spectroscopy.
    Jang HJ; Kim JM; Choi CY
    Exp Eye Res; 2014 Apr; 121():58-65. PubMed ID: 24534570
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The toxicity of lead to Desulfovibrio desulfuricans G20 in the presence of goethite and quartz.
    Sani RK; Rastogi G; Moberly JG; Dohnalkova A; Ginn TR; Spycher N; Shende RV; Peyton BM
    J Basic Microbiol; 2010 Apr; 50(2):160-70. PubMed ID: 20082378
    [TBL] [Abstract][Full Text] [Related]  

  • 23. IscS from Archaeoglobus fulgidus has no desulfurase activity but may provide a cysteine ligand for [Fe2S2] cluster assembly.
    Pagnier A; Nicolet Y; Fontecilla-Camps JC
    Biochim Biophys Acta; 2015 Jun; 1853(6):1457-63. PubMed ID: 25447670
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural and Kinetic Characterization of Hyperthermophilic NADH-Dependent Persulfide Reductase from
    Shabdar S; Anaclet B; Castineiras AG; Desir N; Choe N; Crane EJ; Sazinsky MH
    Archaea; 2021; 2021():8817136. PubMed ID: 33776585
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sugar utilization in the hyperthermophilic, sulfate-reducing archaeon Archaeoglobus fulgidus strain 7324: starch degradation to acetate and CO2 via a modified Embden-Meyerhof pathway and acetyl-CoA synthetase (ADP-forming).
    Labes A; Schönheit P
    Arch Microbiol; 2001 Nov; 176(5):329-38. PubMed ID: 11702074
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reaction cycle of the dissimilatory sulfite reductase from Archaeoglobus fulgidus.
    Parey K; Warkentin E; Kroneck PM; Ermler U
    Biochemistry; 2010 Oct; 49(41):8912-21. PubMed ID: 20822098
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative analysis of the elemental composition and the mass of bacterial polyphosphate bodies using STEM EDX.
    Goldberg J; Gonzalez H; Jensen TE; Corpe WA
    Microbios; 2001; 106(415):177-88. PubMed ID: 11522129
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rubredoxin acts as an electron donor for neelaredoxin in Archaeoglobus fulgidus.
    Rodrigues JV; Abreu IA; Saraiva LM; Teixeira M
    Biochem Biophys Res Commun; 2005 Apr; 329(4):1300-5. PubMed ID: 15766568
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural elucidation of an asparagine-linked oligosaccharide from the hyperthermophilic archaeon, Archaeoglobus fulgidus.
    Fujinami D; Nyirenda J; Matsumoto S; Kohda D
    Carbohydr Res; 2015 Sep; 413():55-62. PubMed ID: 26093517
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oligomerization behavior of the archaeal Sm2-type protein from Archaeoglobus fulgidus.
    Kilic T; Sanglier S; Van Dorsselaer A; Suck D
    Protein Sci; 2006 Oct; 15(10):2310-7. PubMed ID: 16963646
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure of the dissimilatory sulfite reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus.
    Schiffer A; Parey K; Warkentin E; Diederichs K; Huber H; Stetter KO; Kroneck PM; Ermler U
    J Mol Biol; 2008 Jun; 379(5):1063-74. PubMed ID: 18495156
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electron microprobe X-ray analysis of polyphosphate granules in Plesiomonas shigelloides.
    Ogawa J; Amano Y
    Microbiol Immunol; 1987; 31(11):1121-5. PubMed ID: 2832712
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conserving energy with sulfate around 100 °C--structure and mechanism of key metal enzymes in hyperthermophilic Archaeoglobus fulgidus.
    Parey K; Fritz G; Ermler U; Kroneck PM
    Metallomics; 2013 Apr; 5(4):302-17. PubMed ID: 23324858
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ADP-dependent glucokinase from the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus strain 7324.
    Labes A; Schönheit P
    Arch Microbiol; 2003 Jul; 180(1):69-75. PubMed ID: 12802482
    [TBL] [Abstract][Full Text] [Related]  

  • 35. External iron regulates polyphosphate content in the acidophilic, thermophilic alga Cyanidium caldarium.
    Nagasaka S; Yoshimura E
    Biol Trace Elem Res; 2008 Dec; 125(3):286-9. PubMed ID: 18575816
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Archaeal Sm proteins form heptameric and hexameric complexes: crystal structures of the Sm1 and Sm2 proteins from the hyperthermophile Archaeoglobus fulgidus.
    Törö I; Basquin J; Teo-Dreher H; Suck D
    J Mol Biol; 2002 Jun; 320(1):129-42. PubMed ID: 12079339
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Formation of volutin granules in Corynebacterium glutamicum.
    Pallerla SR; Knebel S; Polen T; Klauth P; Hollender J; Wendisch VF; Schoberth SM
    FEMS Microbiol Lett; 2005 Feb; 243(1):133-40. PubMed ID: 15668011
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioengineered tunable memristor based on protein nanocage.
    Meng F; Sana B; Li Y; Liu Y; Lim S; Chen X
    Small; 2014 Jan; 10(2):277-83. PubMed ID: 23956014
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lipid component parts analysis of the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus.
    Tarui M; Tanaka N; Tomura K; Ohga M; Morii H; Koga Y
    J UOEH; 2007 Jun; 29(2):131-9. PubMed ID: 17582985
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessment of the Carbon Monoxide Metabolism of the Hyperthermophilic Sulfate-Reducing Archaeon Archaeoglobus fulgidus VC-16 by Comparative Transcriptome Analyses.
    Hocking WP; Roalkvam I; Magnussen C; Stokke R; Steen IH
    Archaea; 2015; 2015():235384. PubMed ID: 26345487
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.