These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 27195529)

  • 1. Utilizing in Situ Electrochemical SHINERS for Oxygen Reduction Reaction Studies in Aprotic Electrolytes.
    Galloway TA; Hardwick LJ
    J Phys Chem Lett; 2016 Jun; 7(11):2119-24. PubMed ID: 27195529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ SHINERS at electrochemical single-crystal electrode/electrolyte interfaces: tuning preparation strategies and selected applications.
    Li JF; Rudnev A; Fu Y; Bodappa N; Wandlowski T
    ACS Nano; 2013 Oct; 7(10):8940-52. PubMed ID: 24007327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shell isolated nanoparticles for enhanced Raman spectroscopy studies in lithium-oxygen cells.
    Galloway TA; Cabo-Fernandez L; Aldous IM; Braga F; Hardwick LJ
    Faraday Discuss; 2017 Dec; 205():469-490. PubMed ID: 28913534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Core-Shell Nanostructure-Enhanced Raman Spectroscopy for Surface Catalysis.
    Zhang H; Duan S; Radjenovic PM; Tian ZQ; Li JF
    Acc Chem Res; 2020 Apr; 53(4):729-739. PubMed ID: 32031367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and characterization of gold nanoparticles coated with ultrathin and chemically inert dielectric shells for SHINERS applications.
    Li JF; Li SB; Anema JR; Yang ZL; Huang YF; Ding Y; Wu YF; Zhou XS; Wu DY; Ren B; Wang ZL; Tian ZQ
    Appl Spectrosc; 2011 Jun; 65(6):620-6. PubMed ID: 21639983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dielectric shell isolated and graphene shell isolated nanoparticle enhanced Raman spectroscopies and their applications.
    Li JF; Anema JR; Wandlowski T; Tian ZQ
    Chem Soc Rev; 2015 Dec; 44(23):8399-409. PubMed ID: 26426491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ Spectroscopic Insight into the Origin of the Enhanced Performance of Bimetallic Nanocatalysts towards the Oxygen Reduction Reaction (ORR).
    Wang YH; Le JB; Li WQ; Wei J; Radjenovic PM; Zhang H; Zhou XS; Cheng J; Tian ZQ; Li JF
    Angew Chem Int Ed Engl; 2019 Nov; 58(45):16062-16066. PubMed ID: 31513325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Tetraalkylammonium Cation Chain Length on Gold and Glassy Carbon Electrode Interfaces for Alkali Metal-Oxygen Batteries.
    Aldous IM; Hardwick LJ
    J Phys Chem Lett; 2014 Nov; 5(21):3924-30. PubMed ID: 26278771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying Reactive Sites and Transport Limitations of Oxygen Reactions in Aprotic Lithium-O2 Batteries at the Stage of Sudden Death.
    Wang J; Zhang Y; Guo L; Wang E; Peng Z
    Angew Chem Int Ed Engl; 2016 Apr; 55(17):5201-5. PubMed ID: 26970228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries.
    Lu YC; Gasteiger HA; Shao-Horn Y
    J Am Chem Soc; 2011 Nov; 133(47):19048-51. PubMed ID: 22044022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shell-isolated nanoparticle-enhanced Raman spectroscopy study of the adsorption behaviour of DNA bases on Au(111) electrode surfaces.
    Wen BY; Jin X; Li Y; Wang YH; Li CY; Liang MM; Panneerselvam R; Xu QC; Wu DY; Yang ZL; Li JF; Tian ZQ
    Analyst; 2016 Jun; 141(12):3731-6. PubMed ID: 27001527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox-switching in a viologen-type adlayer: an electrochemical shell-isolated nanoparticle enhanced Raman spectroscopy study on Au(111)-(1×1) single crystal electrodes.
    Liu B; Blaszczyk A; Mayor M; Wandlowski T
    ACS Nano; 2011 Jul; 5(7):5662-72. PubMed ID: 21634391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitatively Revealing the Anomalous Enhancement in Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy Using Single-Nanoparticle Spectroscopy.
    Hu S; Wang J; Zhang YJ; Wen BY; Wu SS; Radjenovic PM; Yang Z; Ren B; Li JF
    ACS Nano; 2022 Dec; 16(12):21388-21396. PubMed ID: 36468912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Situ Monitoring of Electrooxidation Processes at Gold Single Crystal Surfaces Using Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy.
    Li CY; Dong JC; Jin X; Chen S; Panneerselvam R; Rudnev AV; Yang ZL; Li JF; Wandlowski T; Tian ZQ
    J Am Chem Soc; 2015 Jun; 137(24):7648-51. PubMed ID: 26052930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen reactions on Pt{
    Galloway TA; Dong JC; Li JF; Attard G; Hardwick LJ
    Chem Sci; 2019 Mar; 10(10):2956-2964. PubMed ID: 30996874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-enhanced Raman spectroscopy using gold-core platinum-shell nanoparticle film electrodes: toward a versatile vibrational strategy for electrochemical interfaces.
    Li JF; Yang ZL; Ren B; Liu GK; Fang PP; Jiang YX; Wu DY; Tian ZQ
    Langmuir; 2006 Dec; 22(25):10372-9. PubMed ID: 17129005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Situ Analysis of Surface Catalytic Reactions Using Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy.
    Wang YH; Wei J; Radjenovic P; Tian ZQ; Li JF
    Anal Chem; 2019 Feb; 91(3):1675-1685. PubMed ID: 30629409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pinhole-Free Shell-Isolated Nanoparticle Enhanced Raman Spectroscopy for Interference-Free Probing of Electrochemical Reactions.
    Murugasenapathi NK; Jebakumari KAE; Mohamed SJ; Giribabu K; Palanisamy T
    J Phys Chem Lett; 2021 Jul; 12(29):7046-7052. PubMed ID: 34291948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Core-Shell Nanoparticle-Enhanced Raman Spectroscopy.
    Li JF; Zhang YJ; Ding SY; Panneerselvam R; Tian ZQ
    Chem Rev; 2017 Apr; 117(7):5002-5069. PubMed ID: 28271881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrolyte Solvation Structure at Solid-Liquid Interface Probed by Nanogap Surface-Enhanced Raman Spectroscopy.
    Yang G; Ivanov IN; Ruther RE; Sacci RL; Subjakova V; Hallinan DT; Nanda J
    ACS Nano; 2018 Oct; 12(10):10159-10170. PubMed ID: 30226745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.