These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 27195529)

  • 21. Direct
    Zhao Z; Zhang X; Zhou Z; Wang E; Peng Z
    Nano Lett; 2022 Jan; 22(1):501-507. PubMed ID: 34962821
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Shell-isolated nanoparticle-enhanced Raman spectroscopy.
    Li JF; Huang YF; Ding Y; Yang ZL; Li SB; Zhou XS; Fan FR; Zhang W; Zhou ZY; Wu DY; Ren B; Wang ZL; Tian ZQ
    Nature; 2010 Mar; 464(7287):392-5. PubMed ID: 20237566
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Limitations in Rechargeability of Li-O2 Batteries and Possible Origins.
    McCloskey BD; Bethune DS; Shelby RM; Mori T; Scheffler R; Speidel A; Sherwood M; Luntz AC
    J Phys Chem Lett; 2012 Oct; 3(20):3043-7. PubMed ID: 26292247
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrochemical behavior of N-methyl-N'-carboxydecyl-4,4'-bipyridinium probed by surface-enhanced Raman spectroscopy.
    Xu JF; Liu GK
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Oct; 114():55-60. PubMed ID: 23764489
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermally Stable TiO
    Hartman T; Weckhuysen BM
    Chemistry; 2018 Mar; 24(15):3733-3741. PubMed ID: 29388737
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Advanced Spectroelectrochemical Techniques to Study Electrode Interfaces Within Lithium-Ion and Lithium-Oxygen Batteries.
    Cowan AJ; Hardwick LJ
    Annu Rev Anal Chem (Palo Alto Calif); 2019 Jun; 12(1):323-346. PubMed ID: 31038984
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Real-Time Monitoring of Surface Effects on the Oxygen Reduction Reaction Mechanism for Aprotic Na-O
    Zhang J; Zhang XG; Dong JC; Radjenovic PM; Young DJ; Yao JL; Yuan YX; Tian ZQ; Li JF
    J Am Chem Soc; 2021 Dec; 143(48):20049-20054. PubMed ID: 34812610
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrochemical and surfaced-enhanced Raman spectroscopic investigation of CO and SCN- adsorbed on Au(core)-Pt(shell) nanoparticles supported on GC electrodes.
    Zhang B; Li JF; Zhong QL; Ren B; Tian ZQ; Zou SZ
    Langmuir; 2005 Aug; 21(16):7449-55. PubMed ID: 16042478
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy.
    Krajczewski J; Kudelski A
    Front Chem; 2019; 7():410. PubMed ID: 31214580
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improved surface-enhanced Raman scattering on electrochemically roughened silver substrates prepared in bielectrolyte solutions.
    Liu YC; Wang CC; Tsai JF
    Anal Chim Acta; 2007 Feb; 584(2):433-8. PubMed ID: 17386634
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Revealing the Role of Interfacial Properties on Catalytic Behaviors by in Situ Surface-Enhanced Raman Spectroscopy.
    Zhang H; Zhang XG; Wei J; Wang C; Chen S; Sun HL; Wang YH; Chen BH; Yang ZL; Wu DY; Li JF; Tian ZQ
    J Am Chem Soc; 2017 Aug; 139(30):10339-10346. PubMed ID: 28700232
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In situ surface-enhanced Raman spectroelectrochemical analysis system with a hemin modified nanostructured gold surface.
    Yuan T; Le Thi Ngoc L; van Nieuwkasteele J; Odijk M; van den Berg A; Permentier H; Bischoff R; Carlen ET
    Anal Chem; 2015 Mar; 87(5):2588-92. PubMed ID: 25643066
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Core-shell nanoparticle based SERS from hydrogen adsorbed on a rhodium(111) electrode.
    Li JF; Anema JR; Yu YC; Yang ZL; Huang YF; Zhou XS; Ren B; Tian ZQ
    Chem Commun (Camb); 2011 Feb; 47(7):2023-5. PubMed ID: 21218217
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Raman mapping and in situ SERS spectroelectrochemical studies of 6-mercaptopurine SAMs on the gold electrode.
    Yang H; Liu Y; Liu Z; Yang Y; Jiang J; Zhang Z; Shen G; Yu R
    J Phys Chem B; 2005 Feb; 109(7):2739-44. PubMed ID: 16851282
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Water oxidation intermediates on iridium oxide electrodes probed by in situ electrochemical SHINERS.
    Saeed KH; Forster M; Li JF; Hardwick LJ; Cowan AJ
    Chem Commun (Camb); 2020 Jan; 56(7):1129-1132. PubMed ID: 31894774
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SERS and DFT study of water on metal cathodes of silver, gold and platinum nanoparticles.
    Li JF; Huang YF; Duan S; Pang R; Wu DY; Ren B; Xu X; Tian ZQ
    Phys Chem Chem Phys; 2010 Mar; 12(10):2493-502. PubMed ID: 20449364
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photovoltaic cells as a highly efficient system for biomedical and electrochemical surface-enhanced Raman spectroscopy analysis.
    Niciński K; Witkowska E; Korsak D; Noworyta K; Trzcińska-Danielewicz J; Girstun A; Kamińska A
    RSC Adv; 2019 Jan; 9(2):576-591. PubMed ID: 35517626
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surface-enhanced vibrational spectroscopy of B vitamins: what is the effect of SERS-active metals used?
    Kokaislová A; Matějka P
    Anal Bioanal Chem; 2012 May; 403(4):985-93. PubMed ID: 22281680
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diazotization-coupling reaction-based selective determination of nitrite in complex samples using shell-isolated nanoparticle-enhanced Raman spectroscopy.
    Zhang K; Hu Y; Li G
    Talanta; 2013 Nov; 116():712-8. PubMed ID: 24148465
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy: correlating structural information and adsorption processes of pyridine at the Au(hkl) single crystal/solution interface.
    Li JF; Zhang YJ; Rudnev AV; Anema JR; Li SB; Hong WJ; Rajapandiyan P; Lipkowski J; Wandlowski T; Tian ZQ
    J Am Chem Soc; 2015 Feb; 137(6):2400-8. PubMed ID: 25625429
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.