These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 27195669)

  • 1. Developing a Gene Biomarker at the Tipping Point of Adaptive and Adverse Responses in Human Bronchial Epithelial Cells.
    Currier JM; Cheng WY; Menendez D; Conolly R; Chorley BN
    PLoS One; 2016; 11(5):e0155875. PubMed ID: 27195669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteome profiling reveals potential toxicity and detoxification pathways following exposure of BEAS-2B cells to engineered nanoparticle titanium dioxide.
    Ge Y; Bruno M; Wallace K; Winnik W; Prasad RY
    Proteomics; 2011 Jun; 11(12):2406-22. PubMed ID: 21595037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide analysis of BEAS-2B cells exposed to trivalent arsenicals and dimethylthioarsinic acid.
    Chilakapati J; Wallace K; Ren H; Fricke M; Bailey K; Ward W; Creed J; Kitchin K
    Toxicology; 2010 Jan; 268(1-2):31-9. PubMed ID: 19945496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Vitro Cytotoxicity and Adaptive Stress Responses to Selected Haloacetic Acid and Halobenzoquinone Water Disinfection Byproducts.
    Procházka E; Escher BI; Plewa MJ; Leusch FD
    Chem Res Toxicol; 2015 Oct; 28(10):2059-68. PubMed ID: 26327680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene expressions changes in bronchial epithelial cells: markers for respiratory sensitizers and exploration of the NRF2 pathway.
    Remy S; Verstraelen S; Van Den Heuvel R; Nelissen I; Lambrechts N; Hooyberghs J; Schoeters G
    Toxicol In Vitro; 2014 Mar; 28(2):209-17. PubMed ID: 24211530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cadmium induces cytotoxicity in human bronchial epithelial cells through upregulation of eIF5A1 and NF-kappaB.
    Chen DJ; Xu YM; Du JY; Huang DY; Lau AT
    Biochem Biophys Res Commun; 2014 Feb; 445(1):95-9. PubMed ID: 24491565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene profiles of a human bronchial epithelial cell line after in vitro exposure to respiratory (non-)sensitizing chemicals: identification of discriminating genetic markers and pathway analysis.
    Verstraelen S; Nelissen I; Hooyberghs J; Witters H; Schoeters G; Van Cauwenberge P; Van Den Heuvel R
    Toxicology; 2009 Jan; 255(3):151-9. PubMed ID: 19041681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative stress of CeO2 nanoparticles via p38-Nrf-2 signaling pathway in human bronchial epithelial cell, Beas-2B.
    Eom HJ; Choi J
    Toxicol Lett; 2009 Jun; 187(2):77-83. PubMed ID: 19429248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene expression profile and toxic effects in human bronchial epithelial cells exposed to zearalenone.
    So MY; Tian Z; Phoon YS; Sha S; Antoniou MN; Zhang J; Wu RS; Tan-Un KC
    PLoS One; 2014; 9(5):e96404. PubMed ID: 24788721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene expression profiling and pathway analysis of human bronchial epithelial cells exposed to airborne particulate matter collected from Saudi Arabia.
    Sun H; Shamy M; Kluz T; Muñoz AB; Zhong M; Laulicht F; Alghamdi MA; Khoder MI; Chen LC; Costa M
    Toxicol Appl Pharmacol; 2012 Dec; 265(2):147-57. PubMed ID: 23085030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Gadd45 expression and delayed G2/M progression are p53-dependent in zinc-supplemented human bronchial epithelial cells.
    Shih RS; Wong SH; Schoene NW; Zhang JJ; Lei KY
    Exp Biol Med (Maywood); 2010 Aug; 235(8):932-40. PubMed ID: 20660093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptomic Analysis of Human Primary Bronchial Epithelial Cells after Chloropicrin Treatment.
    Pesonen M; Storvik M; Kokkola T; Rysä J; Vähäkangas K; Pasanen M
    Chem Res Toxicol; 2015 Oct; 28(10):1926-35. PubMed ID: 26352163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PM2.5 induces Nrf2-mediated defense mechanisms against oxidative stress by activating PIK3/AKT signaling pathway in human lung alveolar epithelial A549 cells.
    Deng X; Rui W; Zhang F; Ding W
    Cell Biol Toxicol; 2013 Jun; 29(3):143-57. PubMed ID: 23525690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The antioxidant transcription factor Nrf2 contributes to the protective effect of mild thermotolerance (40°C) against heat shock-induced apoptosis.
    Glory A; Averill-Bates DA
    Free Radic Biol Med; 2016 Oct; 99():485-497. PubMed ID: 27591796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global gene expression changes underlying Stachybotrys chartarum toxin-induced apoptosis in murine alveolar macrophages: evidence of multiple signal transduction pathways.
    Wang H; Yadav JS
    Apoptosis; 2007 Mar; 12(3):535-48. PubMed ID: 17186382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a panel of high-throughput reporter-gene assays to detect genotoxicity and oxidative stress.
    van der Linden SC; von Bergh AR; van Vught-Lussenburg BM; Jonker LR; Teunis M; Krul CA; van der Burg B
    Mutat Res Genet Toxicol Environ Mutagen; 2014 Jan; 760():23-32. PubMed ID: 24362253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of the Nrf2-regulated antioxidant cell response inhibits HEMA-induced oxidative stress and supports cell viability.
    Gallorini M; Petzel C; Bolay C; Hiller KA; Cataldi A; Buchalla W; Krifka S; Schweikl H
    Biomaterials; 2015 Jul; 56():114-28. PubMed ID: 25934285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. D-Serine exposure resulted in gene expression changes indicative of activation of fibrogenic pathways and down-regulation of energy metabolism and oxidative stress response.
    Soto A; DelRaso NJ; Schlager JJ; Chan VT
    Toxicology; 2008 Jan; 243(1-2):177-92. PubMed ID: 18061331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global gene expression profiling of human bronchial epithelial cells exposed to airborne fine particulate matter collected from Wuhan, China.
    Ding X; Wang M; Chu H; Chu M; Na T; Wen Y; Wu D; Han B; Bai Z; Chen W; Yuan J; Wu T; Hu Z; Zhang Z; Shen H
    Toxicol Lett; 2014 Jul; 228(1):25-33. PubMed ID: 24769257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TP53-dependent autophagy links the ATR-CHEK1 axis activation to proinflammatory VEGFA production in human bronchial epithelial cells exposed to fine particulate matter (PM2.5).
    Xu X; Wang H; Liu S; Xing C; Liu Y; Aodengqimuge ; Zhou W; Yuan X; Ma Y; Hu M; Hu Y; Zou S; Gu Y; Peng S; Yuan S; Li W; Ma Y; Song L
    Autophagy; 2016 Oct; 12(10):1832-1848. PubMed ID: 27463284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.