BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 27195798)

  • 1. Solution Processed PEDOT Analogues in Electrochemical Supercapacitors.
    Österholm AM; Ponder JF; Kerszulis JA; Reynolds JR
    ACS Appl Mater Interfaces; 2016 Jun; 8(21):13492-8. PubMed ID: 27195798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A free-standing, flexible PEDOT:PSS film and its nanocomposites with graphene nanoplatelets as electrodes for quasi-solid-state supercapacitors.
    Ahmed S; Rafat M; Singh MK; Hashmi SA
    Nanotechnology; 2018 Sep; 29(39):395401. PubMed ID: 29968570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of Electrochemical Properties of Poly(3,4-ethylene dioxythiophene) (PEDOT) Thin Film by UV Irradiation.
    Lim KB; Choi MS; Kim SH; Lee JY
    J Nanosci Nanotechnol; 2021 Sep; 21(9):4638-4643. PubMed ID: 33691843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and characterization of RuO(2)/poly(3,4-ethylenedioxythiophene) composite nanotubes for supercapacitors.
    Liu R; Duay J; Lane T; Bok Lee S
    Phys Chem Chem Phys; 2010 May; 12(17):4309-16. PubMed ID: 20407700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of PEDOTOH/PEO-based Supercapacitors in Agarose Gel Electrolyte.
    Wustoni S; Nikiforidis G; Ohayon D; Inal S; Indartono YS; Suendo V; Yuliarto B
    Chem Asian J; 2022 Sep; 17(17):e202200427. PubMed ID: 35735047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of Supercapacitors on Flexible Substrates with Electrodeposited PEDOT/Graphene Composites.
    Lehtimäki S; Suominen M; Damlin P; Tuukkanen S; Kvarnström C; Lupo D
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22137-47. PubMed ID: 26381462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors.
    Chen W; Xia C; Alshareef HN
    ACS Nano; 2014 Sep; 8(9):9531-41. PubMed ID: 25133989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supercapacitive properties of PEDOT and carbon colloidal microspheres.
    Kelly TL; Yano K; Wolf MO
    ACS Appl Mater Interfaces; 2009 Nov; 1(11):2536-43. PubMed ID: 20356124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PEDOT-based composites as electrode materials for supercapacitors.
    Zhao Z; Richardson GF; Meng Q; Zhu S; Kuan HC; Ma J
    Nanotechnology; 2016 Jan; 27(4):042001. PubMed ID: 26656436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox exchange induced MnO2 nanoparticle enrichment in poly(3,4-ethylenedioxythiophene) nanowires for electrochemical energy storage.
    Liu R; Duay J; Lee SB
    ACS Nano; 2010 Jul; 4(7):4299-307. PubMed ID: 20590128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intertwined nanocarbon and manganese oxide hybrid foam for high-energy supercapacitors.
    Wang W; Guo S; Bozhilov KN; Yan D; Ozkan M; Ozkan CS
    Small; 2013 Nov; 9(21):3714-21. PubMed ID: 23650047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailoring Energy and Power Density through Controlling the Concentration of Oxygen Vacancies in V
    Bi W; Jahrman E; Seidler G; Wang J; Gao G; Wu G; Atif M; AlSalhi M; Cao G
    ACS Appl Mater Interfaces; 2019 May; 11(18):16647-16655. PubMed ID: 30977632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Macroscopic fibres of CNTs as electrodes for multifunctional electric double layer capacitors: from quantum capacitance to device performance.
    Senokos E; Reguero V; Palma J; Vilatela JJ; Marcilla R
    Nanoscale; 2016 Feb; 8(6):3620-8. PubMed ID: 26809811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electropolymerized Star-Shaped Benzotrithiophenes Yield π-Conjugated Hierarchical Networks with High Areal Capacitance.
    Ringk A; Lignie A; Hou Y; Alshareef HN; Beaujuge PM
    ACS Appl Mater Interfaces; 2016 May; 8(19):12091-100. PubMed ID: 27028665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Faradic redox active material of Cu7S4 nanowires with a high conductance for flexible solid state supercapacitors.
    Javed MS; Dai S; Wang M; Xi Y; Lang Q; Guo D; Hu C
    Nanoscale; 2015 Aug; 7(32):13610-8. PubMed ID: 26206591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Performance Supercapacitors from Niobium Nanowire Yarns.
    Mirvakili SM; Mirvakili MN; Englezos P; Madden JD; Hunter IW
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):13882-8. PubMed ID: 26068246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dioxythiophene-based polymer electrodes for supercapacitor modules.
    Liu DY; Reynolds JR
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3586-93. PubMed ID: 21090685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear dielectric thin films for high-power electric storage with energy density comparable with electrochemical supercapacitors.
    Yao K; Chen S; Rahimabady M; Mirshekarloo MS; Yu S; Tay FE; Sritharan T; Lu L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Sep; 58(9):1968-74. PubMed ID: 21937333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible superior electrode architectures based on three-dimensional porous spinous α-Fe2O3 with a high performance as a supercapacitor.
    Nan H; Yu L; Ma W; Geng B; Zhang X
    Dalton Trans; 2015 May; 44(20):9581-7. PubMed ID: 25921621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of PEDOT films in ionic liquid supercapacitors: demonstration as a power source for polymer electrochromic devices.
    Österholm AM; Shen DE; Dyer AL; Reynolds JR
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13432-40. PubMed ID: 24328278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.