These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 27195955)

  • 1. Magnetoreception Regulates Male Courtship Activity in Drosophila.
    Wu CL; Fu TF; Chiang MH; Chang YW; Her JL; Wu T
    PLoS One; 2016; 11(5):e0155942. PubMed ID: 27195955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insect pheromone behavior: fruit fly.
    Yamamoto D; Kohatsu S; Koganezawa M
    Methods Mol Biol; 2013; 1068():261-72. PubMed ID: 24014368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic Fields Modulate Blue-Light-Dependent Regulation of Neuronal Firing by Cryptochrome.
    Giachello CN; Scrutton NS; Jones AR; Baines RA
    J Neurosci; 2016 Oct; 36(42):10742-10749. PubMed ID: 27798129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. dTRPA1 in Non-circadian Neurons Modulates Temperature-dependent Rhythmic Activity in Drosophila melanogaster.
    Das A; Holmes TC; Sheeba V
    J Biol Rhythms; 2016 Jun; 31(3):272-88. PubMed ID: 26868037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A role of cryptochrome for magnetic field-dependent improvement of sleep quality, lifespan, and motor function in Drosophila.
    Kawasaki H; Okano H; Ishiwatari H; Kishi T; Ishida N
    Genes Cells; 2023 Jul; 28(7):496-502. PubMed ID: 37096945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism.
    Gegear RJ; Foley LE; Casselman A; Reppert SM
    Nature; 2010 Feb; 463(7282):804-7. PubMed ID: 20098414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drosophila CRY Entrains Clocks in Body Tissues to Light and Maintains Passive Membrane Properties in a Non-clock Body Tissue Independent of Light.
    Agrawal P; Houl JH; Gunawardhana KL; Liu T; Zhou J; Zoran MJ; Hardin PE
    Curr Biol; 2017 Aug; 27(16):2431-2441.e3. PubMed ID: 28781048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila.
    Gegear RJ; Casselman A; Waddell S; Reppert SM
    Nature; 2008 Aug; 454(7207):1014-8. PubMed ID: 18641630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A large-scale behavioral screen to identify neurons controlling motor programs in the Drosophila brain.
    Flood TF; Gorczyca M; White BH; Ito K; Yoshihara M
    G3 (Bethesda); 2013 Oct; 3(10):1629-37. PubMed ID: 23934998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. dTRPA1 Modulates Afternoon Peak of Activity of Fruit Flies Drosophila melanogaster.
    Das A; Holmes TC; Sheeba V
    PLoS One; 2015; 10(7):e0134213. PubMed ID: 26226013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurogenetics of courtship and mating in Drosophila.
    Villella A; Hall JC
    Adv Genet; 2008; 62():67-184. PubMed ID: 19010254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal dynamics of neuronal activation by Channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae.
    Pulver SR; Pashkovski SL; Hornstein NJ; Garrity PA; Griffith LC
    J Neurophysiol; 2009 Jun; 101(6):3075-88. PubMed ID: 19339465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. H2O2-Sensitive Isoforms of Drosophila melanogaster TRPA1 Act in Bitter-Sensing Gustatory Neurons to Promote Avoidance of UV During Egg-Laying.
    Guntur AR; Gou B; Gu P; He R; Stern U; Xiang Y; Yang CH
    Genetics; 2017 Feb; 205(2):749-759. PubMed ID: 27932542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circadian photoreception in Drosophila: functions of cryptochrome in peripheral and central clocks.
    Ivanchenko M; Stanewsky R; Giebultowicz JM
    J Biol Rhythms; 2001 Jun; 16(3):205-15. PubMed ID: 11407780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryptochrome-positive and -negative clock neurons in Drosophila entrain differentially to light and temperature.
    Yoshii T; Hermann C; Helfrich-Förster C
    J Biol Rhythms; 2010 Dec; 25(6):387-98. PubMed ID: 21135155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cryptochrome-dependent magnetoreception in a heteropteran insect continues even after 24 h in darkness.
    Netušil R; Tomanová K; Chodáková L; Chvalová D; Doležel D; Ritz T; Vácha M
    J Exp Biol; 2021 Oct; 224(19):. PubMed ID: 34477876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drosophila cryb mutation reveals two circadian clocks that drive locomotor rhythm and have different responsiveness to light.
    Yoshii T; Funada Y; Ibuki-Ishibashi T; Matsumoto A; Tanimura T; Tomioka K
    J Insect Physiol; 2004 Jun; 50(6):479-88. PubMed ID: 15183277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of Drosophila TRPA1-expressing neurons to circadian locomotor activity patterns.
    Lee Y
    PLoS One; 2013; 8(12):e85189. PubMed ID: 24367706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An electromagnetic field disrupts negative geotaxis in Drosophila via a CRY-dependent pathway.
    Fedele G; Green EW; Rosato E; Kyriacou CP
    Nat Commun; 2014 Jul; 5():4391. PubMed ID: 25019586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Essential elements of radical pair magnetosensitivity in Drosophila.
    Bradlaugh AA; Fedele G; Munro AL; Hansen CN; Hares JM; Patel S; Kyriacou CP; Jones AR; Rosato E; Baines RA
    Nature; 2023 Mar; 615(7950):111-116. PubMed ID: 36813962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.