These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 27196)

  • 1. Metabolism of the carcinogen chromate by rat liver microsomes.
    Gruber JE; Jennette KW
    Biochem Biophys Res Commun; 1978 May; 82(2):700-6. PubMed ID: 27196
    [No Abstract]   [Full Text] [Related]  

  • 2. Metabolism of nitrosoacetoxymethylmethylamine in liver microsomes.
    Appel KE; Frank N; Wiessler M
    Biochem Pharmacol; 1981 Oct; 30(20):2767-72. PubMed ID: 7317074
    [No Abstract]   [Full Text] [Related]  

  • 3. Reductive metabolism of the carcinogen 4-(5-nitro-2-furyl)thiazole to 1-(4-thiazolyl)-3-cyano-1-propanone by rat liver subcellular fractions.
    Swaminathan S; Lower GM; Bryan GT
    Biochem Pharmacol; 1980 Dec; 29(24):3285-92. PubMed ID: 7213403
    [No Abstract]   [Full Text] [Related]  

  • 4. Oxidation of 1,2-epoxy-3-butene to 1,2:3,4-diepoxybutane by cDNA-expressed human cytochromes P450 2E1 and 3A4 and human, mouse and rat liver microsomes.
    Seaton MJ; Follansbee MH; Bond JA
    Carcinogenesis; 1995 Oct; 16(10):2287-93. PubMed ID: 7586124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of isothiocyanates on the metabolism of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and benzo[a]pyrene by hamster and rat liver microsomes.
    Hamilton SM; Teel RW
    Anticancer Res; 1994; 14(3A):1089-94. PubMed ID: 8074455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of chromium(V) in the mechanism of chromate-induced oxidative DNA damage and cancer.
    Sugden KD; Stearns DM
    J Environ Pathol Toxicol Oncol; 2000; 19(3):215-30. PubMed ID: 10983888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial reduction of the carcinogen chromate: formation of chromium(V).
    Rossi SC; Gorman N; Wetterhahn KE
    Chem Res Toxicol; 1988; 1(2):101-7. PubMed ID: 2979716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure reactivity relationships in the microsomal oxidation of tertiary amines.
    Galliani G; Rindone B; Dagnino G; Salmona M
    Eur J Drug Metab Pharmacokinet; 1984; 9(4):289-93. PubMed ID: 6532801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [P-450 cytochrome. Detoxication by liver microsomes].
    Gajdos A
    Nouv Presse Med; 1972 Jun; 1(23):1587-92. PubMed ID: 4402521
    [No Abstract]   [Full Text] [Related]  

  • 10. Inhibition of NADPH oxidation and oxidative metabolism of drugs in liver microsomes by zinc.
    Chvapil M; Sipes IG; Ludwig JC; Halladay SC
    Biochem Pharmacol; 1975 Apr; 24(8):917-9. PubMed ID: 235935
    [No Abstract]   [Full Text] [Related]  

  • 11. Solubilization of the carcinogen nickel subsulfide and its interaction with deoxyribonucleic acid and protein.
    Lee JE; Ciccarelli RB; Jennette KW
    Biochemistry; 1982 Feb; 21(4):771-8. PubMed ID: 7074040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biotransformation of the carcinogen chrysazin by NADPH-microsome system.
    Kawai K; Mori H; Hisada K; Nozawa Y
    Res Commun Chem Pathol Pharmacol; 1986 Nov; 54(2):217-26. PubMed ID: 3786946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aerobic chromate reduction by Bacillus subtilis.
    Garbisu C; Alkorta I; Llama MJ; Serra JL
    Biodegradation; 1998; 9(2):133-41. PubMed ID: 9821258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proceedings: Evidence for oxidative metabolism of metyrapone in rat liver microsomes.
    Kahl R; Tüttenberg KH; Niedermeier F; Kahl GF
    Naunyn Schmiedebergs Arch Pharmacol; 1974; 282(Suppl):suppl 282:R44. PubMed ID: 4152363
    [No Abstract]   [Full Text] [Related]  

  • 15. Pseudoenzymatic reduction of N-hydroxy-2-acetylaminofluorene to 2-acetylaminofluorene mediated by cytochrome P450.
    Kitamura S; Takekawa K; Sugihara K; Tatsumi K; Ohta S
    Carcinogenesis; 1999 Feb; 20(2):347-50. PubMed ID: 10069476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the biotransformation of 1,3-butadiene and its metabolite, butadiene monoepoxide, by hepatic and pulmonary tissues from humans, rats and mice.
    Csanády GA; Guengerich FP; Bond JA
    Carcinogenesis; 1992 Jul; 13(7):1143-53. PubMed ID: 1638680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of 7-ketolithocholic acid to chenodeoxycholic acid by rat liver preparations in vitro.
    Amuro Y; Yamade W; Nakano T; Hayashi E; Hada T; Higashino K
    Biochim Biophys Acta; 1985 Aug; 841(2):229-31. PubMed ID: 4016150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromate reduction by rabbit liver aldehyde oxidase.
    Banks RB; Cooke RT
    Biochem Biophys Res Commun; 1986 May; 137(1):8-14. PubMed ID: 2941018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism of 8-hydroxymethylbenz[a]anthracene by rat liver microsomes. Stereochemistry of dihydrodiol metabolites and the effect of enzyme induction.
    Yang SK; Chou MW; Evans FE; Fu PP
    Drug Metab Dispos; 1984; 12(4):403-13. PubMed ID: 6148205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of the chemiluminigenic probes luminol and lucigenin for the detection of active oxygen species in hepatic microsomes and in intact hepatocytes.
    Hildebrandt AG; Weimann A; Kahl R
    Adv Exp Med Biol; 1986; 197():971-80. PubMed ID: 3766305
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.