These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
509 related articles for article (PubMed ID: 27196252)
1. Predicting Mortality in Low-Income Country ICUs: The Rwanda Mortality Probability Model (R-MPM). Riviello ED; Kiviri W; Fowler RA; Mueller A; Novack V; Banner-Goodspeed VM; Weinkauf JL; Talmor DS; Twagirumugabe T PLoS One; 2016; 11(5):e0155858. PubMed ID: 27196252 [TBL] [Abstract][Full Text] [Related]
2. Assessing contemporary intensive care unit outcome: an updated Mortality Probability Admission Model (MPM0-III). Higgins TL; Teres D; Copes WS; Nathanson BH; Stark M; Kramer AA Crit Care Med; 2007 Mar; 35(3):827-35. PubMed ID: 17255863 [TBL] [Abstract][Full Text] [Related]
3. Prospective validation of the intensive care unit admission Mortality Probability Model (MPM0-III). Higgins TL; Kramer AA; Nathanson BH; Copes W; Stark M; Teres D Crit Care Med; 2009 May; 37(5):1619-23. PubMed ID: 19325480 [TBL] [Abstract][Full Text] [Related]
4. SEVERITAS: An externally validated mortality prediction for critically ill patients in low and middle-income countries. Deliberato RO; Escudero GG; Bulgarelli L; Neto AS; Ko SQ; Campos NS; Saat B; Amaro E; Lopes FS; Johnson AE Int J Med Inform; 2019 Nov; 131():103959. PubMed ID: 31539837 [TBL] [Abstract][Full Text] [Related]
5. Simplified prognostic model for critically ill patients in resource limited settings in South Asia. Haniffa R; Mukaka M; Munasinghe SB; De Silva AP; Jayasinghe KSA; Beane A; de Keizer N; Dondorp AM Crit Care; 2017 Oct; 21(1):250. PubMed ID: 29041985 [TBL] [Abstract][Full Text] [Related]
6. Subgroup mortality probability models: are they necessary for specialized intensive care units? Nathanson BH; Higgins TL; Kramer AA; Copes WS; Stark M; Teres D Crit Care Med; 2009 Aug; 37(8):2375-86. PubMed ID: 19531946 [TBL] [Abstract][Full Text] [Related]
7. Investigating SOFA, delta-SOFA and MPM-III for mortality prediction among critically ill patients at a private tertiary hospital ICU in Kenya: A retrospective cohort study. Lukoko LN; Kussin PS; Adam RD; Orwa J; Waweru-Siika W PLoS One; 2020; 15(7):e0235809. PubMed ID: 32673363 [TBL] [Abstract][Full Text] [Related]
8. Comparison of the Mortality Probability Admission Model III, National Quality Forum, and Acute Physiology and Chronic Health Evaluation IV hospital mortality models: implications for national benchmarking*. Kramer AA; Higgins TL; Zimmerman JE Crit Care Med; 2014 Mar; 42(3):544-53. PubMed ID: 24158174 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of two outcome prediction models on an independent database. Moreno R; Miranda DR; Fidler V; Van Schilfgaarde R Crit Care Med; 1998 Jan; 26(1):50-61. PubMed ID: 9428543 [TBL] [Abstract][Full Text] [Related]
11. Assessment of six mortality prediction models in patients admitted with severe sepsis and septic shock to the intensive care unit: a prospective cohort study. Arabi Y; Al Shirawi N; Memish Z; Venkatesh S; Al-Shimemeri A Crit Care; 2003 Oct; 7(5):R116-22. PubMed ID: 12974979 [TBL] [Abstract][Full Text] [Related]
12. Performance in mortality prediction of SAPS 3 And MPM-III scores among adult patients admitted to the ICU of a private tertiary referral hospital in Tanzania: a retrospective cohort study. Kassam N; Aghan E; Somji S; Aziz O; Orwa J; Surani SR PeerJ; 2021; 9():e12332. PubMed ID: 34820169 [TBL] [Abstract][Full Text] [Related]
13. Mortality Probability Models (MPM II) based on an international cohort of intensive care unit patients. Lemeshow S; Teres D; Klar J; Avrunin JS; Gehlbach SH; Rapoport J JAMA; 1993 Nov; 270(20):2478-86. PubMed ID: 8230626 [TBL] [Abstract][Full Text] [Related]
14. The acute physiology and chronic health evaluation III outcome prediction in patients admitted to the intensive care unit after pneumonectomy. Keegan MT; Harrison BA; Brown DR; Whalen FX; Cassivi SD; Afessa B J Cardiothorac Vasc Anesth; 2007 Dec; 21(6):832-7. PubMed ID: 18068061 [TBL] [Abstract][Full Text] [Related]
15. Assessment of the performance of five intensive care scoring models within a large Scottish database. Livingston BM; MacKirdy FN; Howie JC; Jones R; Norrie JD Crit Care Med; 2000 Jun; 28(6):1820-7. PubMed ID: 10890627 [TBL] [Abstract][Full Text] [Related]
16. Acute Physiology and Chronic Health Evaluation (APACHE) IV: hospital mortality assessment for today's critically ill patients. Zimmerman JE; Kramer AA; McNair DS; Malila FM Crit Care Med; 2006 May; 34(5):1297-310. PubMed ID: 16540951 [TBL] [Abstract][Full Text] [Related]
17. Predicting the risk of death in patients in intensive care unit. Saadat-Niaki A; Abtahi D Arch Iran Med; 2007 Jul; 10(3):321-6. PubMed ID: 17604468 [TBL] [Abstract][Full Text] [Related]
18. Mortality and length-of-stay outcomes, 1993-2003, in the binational Australian and New Zealand intensive care adult patient database. Moran JL; Bristow P; Solomon PJ; George C; Hart GK; Crit Care Med; 2008 Jan; 36(1):46-61. PubMed ID: 18090383 [TBL] [Abstract][Full Text] [Related]
19. A revised method to assess intensive care unit clinical performance and resource utilization. Nathanson BH; Higgins TL; Teres D; Copes WS; Kramer A; Stark M Crit Care Med; 2007 Aug; 35(8):1853-62. PubMed ID: 17568328 [TBL] [Abstract][Full Text] [Related]
20. Intensive Care Outcomes and Mortality Prediction at a National Referral Hospital in Western Kenya. Lalani HS; Waweru-Siika W; Mwogi T; Kituyi P; Egger JR; Park LP; Kussin PS Ann Am Thorac Soc; 2018 Nov; 15(11):1336-1343. PubMed ID: 30079751 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]