BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 2719642)

  • 1. Oxidative and non-oxidative mechanisms in the inactivation of cardiac mitochondrial electron transport chain components by doxorubicin.
    Marcillat O; Zhang Y; Davies KJ
    Biochem J; 1989 Apr; 259(1):181-9. PubMed ID: 2719642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase.
    Davies KJ; Doroshow JH
    J Biol Chem; 1986 Mar; 261(7):3060-7. PubMed ID: 3456345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The oxidative inactivation of mitochondrial electron transport chain components and ATPase.
    Zhang Y; Marcillat O; Giulivi C; Ernster L; Davies KJ
    J Biol Chem; 1990 Sep; 265(27):16330-6. PubMed ID: 2168888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of adriamycin on respiratory chain activities in mitochondria from rat liver, rat heart and bovine heart. Evidence for a preferential inhibition of complex III and IV.
    Nicolay K; de Kruijff B
    Biochim Biophys Acta; 1987 Jul; 892(3):320-30. PubMed ID: 3036220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inactivation of cytochrome c oxidase activity in mitochondrial membranes during redox cycling of doxorubicin.
    Demant EJ
    Biochem Pharmacol; 1991 Feb; 41(4):543-52. PubMed ID: 1847635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inactivation of mitochondrial succinate dehydrogenase by adriamycin activated by horseradish peroxidase and hydrogen peroxide.
    Muraoka S; Miura T
    Chem Biol Interact; 2003 Mar; 145(1):67-75. PubMed ID: 12606155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple sites of inhibition of mitochondrial electron transport by local anesthetics.
    Chazotte B; Vanderkooi G
    Biochim Biophys Acta; 1981 Jul; 636(2):153-61. PubMed ID: 6269599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition and inactivation of NADH-cytochrome c reductase activity of bovine heart submitochondrial particles by the iron(III)-adriamycin complex.
    Hasinoff BB
    Biochem J; 1990 Feb; 265(3):865-70. PubMed ID: 2306220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The exogenous NADH dehydrogenase of heart mitochondria is the key enzyme responsible for selective cardiotoxicity of anthracyclines.
    Nohl H; Gille L; Staniek K
    Z Naturforsch C J Biosci; 1998; 53(3-4):279-85. PubMed ID: 9618942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial sites of hydrogen peroxide production in reperfused rat kidney cortex.
    González-Flecha B; Boveris A
    Biochim Biophys Acta; 1995 Apr; 1243(3):361-6. PubMed ID: 7727510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Destruction of phospholipids and respiratory-chain activity in pig-heart submitochondrial particles induced by an adriamycin-iron complex.
    Demant EJ; Jensen PK
    Eur J Biochem; 1983 May; 132(3):551-6. PubMed ID: 6852013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analyses of the molecular mechanism of adriamycin-induced cardiotoxicity.
    Gille L; Nohl H
    Free Radic Biol Med; 1997; 23(5):775-82. PubMed ID: 9296455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two modes of irreversible inactivation of the mitochondrial electron-transfer system by tetradecanoic acid.
    Schewe T; Albracht SP; Ludwig P; Rapoport SM
    Biochim Biophys Acta; 1985 May; 807(2):210-5. PubMed ID: 2983761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical.
    Doroshow JH; Davies KJ
    J Biol Chem; 1986 Mar; 261(7):3068-74. PubMed ID: 3005279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria.
    Turrens JF; Boveris A
    Biochem J; 1980 Nov; 191(2):421-7. PubMed ID: 6263247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial NADH dehydrogenase-catalyzed oxygen radical production by adriamycin, and the relative inactivity of 5-iminodaunorubicin.
    Davies KJ; Doroshow JH; Hochstein P
    FEBS Lett; 1983 Mar; 153(1):227-30. PubMed ID: 6298008
    [No Abstract]   [Full Text] [Related]  

  • 17. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles.
    Panov AV; Scaduto RC
    Arch Biochem Biophys; 1995 Feb; 316(2):815-20. PubMed ID: 7864638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of oxygen by NADH/NADH dehydrogenase in the presence of adriamycin.
    Thornalley PJ; Bannister WH; Bannister JV
    Free Radic Res Commun; 1986; 2(3):163-71. PubMed ID: 2850270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NADH oxidation in submitochondrial particles protects respiratory chain activity against damage by adriamycin-Fe3+.
    Demant EJ
    Eur J Biochem; 1983 Dec; 137(1-2):113-8. PubMed ID: 6317378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Structural and kinetic parameters of the oxidative phosphorylation system, participating in the synchronization of mitochondrial respiratory chain and ATP-synthetase functions].
    Marshanskiĭ VN; Krasinskaia IP; Dragunova SF; Iaguzhinskiĭ LS
    Biokhimiia; 1984 Mar; 49(3):403-8. PubMed ID: 6326863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.