These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 2719642)
1. Oxidative and non-oxidative mechanisms in the inactivation of cardiac mitochondrial electron transport chain components by doxorubicin. Marcillat O; Zhang Y; Davies KJ Biochem J; 1989 Apr; 259(1):181-9. PubMed ID: 2719642 [TBL] [Abstract][Full Text] [Related]
2. Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. Davies KJ; Doroshow JH J Biol Chem; 1986 Mar; 261(7):3060-7. PubMed ID: 3456345 [TBL] [Abstract][Full Text] [Related]
3. The oxidative inactivation of mitochondrial electron transport chain components and ATPase. Zhang Y; Marcillat O; Giulivi C; Ernster L; Davies KJ J Biol Chem; 1990 Sep; 265(27):16330-6. PubMed ID: 2168888 [TBL] [Abstract][Full Text] [Related]
4. Effects of adriamycin on respiratory chain activities in mitochondria from rat liver, rat heart and bovine heart. Evidence for a preferential inhibition of complex III and IV. Nicolay K; de Kruijff B Biochim Biophys Acta; 1987 Jul; 892(3):320-30. PubMed ID: 3036220 [TBL] [Abstract][Full Text] [Related]
5. Inactivation of cytochrome c oxidase activity in mitochondrial membranes during redox cycling of doxorubicin. Demant EJ Biochem Pharmacol; 1991 Feb; 41(4):543-52. PubMed ID: 1847635 [TBL] [Abstract][Full Text] [Related]
6. Inactivation of mitochondrial succinate dehydrogenase by adriamycin activated by horseradish peroxidase and hydrogen peroxide. Muraoka S; Miura T Chem Biol Interact; 2003 Mar; 145(1):67-75. PubMed ID: 12606155 [TBL] [Abstract][Full Text] [Related]
7. Multiple sites of inhibition of mitochondrial electron transport by local anesthetics. Chazotte B; Vanderkooi G Biochim Biophys Acta; 1981 Jul; 636(2):153-61. PubMed ID: 6269599 [TBL] [Abstract][Full Text] [Related]
8. Inhibition and inactivation of NADH-cytochrome c reductase activity of bovine heart submitochondrial particles by the iron(III)-adriamycin complex. Hasinoff BB Biochem J; 1990 Feb; 265(3):865-70. PubMed ID: 2306220 [TBL] [Abstract][Full Text] [Related]
9. The exogenous NADH dehydrogenase of heart mitochondria is the key enzyme responsible for selective cardiotoxicity of anthracyclines. Nohl H; Gille L; Staniek K Z Naturforsch C J Biosci; 1998; 53(3-4):279-85. PubMed ID: 9618942 [TBL] [Abstract][Full Text] [Related]
10. Mitochondrial sites of hydrogen peroxide production in reperfused rat kidney cortex. González-Flecha B; Boveris A Biochim Biophys Acta; 1995 Apr; 1243(3):361-6. PubMed ID: 7727510 [TBL] [Abstract][Full Text] [Related]
11. Destruction of phospholipids and respiratory-chain activity in pig-heart submitochondrial particles induced by an adriamycin-iron complex. Demant EJ; Jensen PK Eur J Biochem; 1983 May; 132(3):551-6. PubMed ID: 6852013 [TBL] [Abstract][Full Text] [Related]
12. Analyses of the molecular mechanism of adriamycin-induced cardiotoxicity. Gille L; Nohl H Free Radic Biol Med; 1997; 23(5):775-82. PubMed ID: 9296455 [TBL] [Abstract][Full Text] [Related]
13. Two modes of irreversible inactivation of the mitochondrial electron-transfer system by tetradecanoic acid. Schewe T; Albracht SP; Ludwig P; Rapoport SM Biochim Biophys Acta; 1985 May; 807(2):210-5. PubMed ID: 2983761 [TBL] [Abstract][Full Text] [Related]
14. Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. Doroshow JH; Davies KJ J Biol Chem; 1986 Mar; 261(7):3068-74. PubMed ID: 3005279 [TBL] [Abstract][Full Text] [Related]
15. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Turrens JF; Boveris A Biochem J; 1980 Nov; 191(2):421-7. PubMed ID: 6263247 [TBL] [Abstract][Full Text] [Related]
16. Mitochondrial NADH dehydrogenase-catalyzed oxygen radical production by adriamycin, and the relative inactivity of 5-iminodaunorubicin. Davies KJ; Doroshow JH; Hochstein P FEBS Lett; 1983 Mar; 153(1):227-30. PubMed ID: 6298008 [No Abstract] [Full Text] [Related]
17. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles. Panov AV; Scaduto RC Arch Biochem Biophys; 1995 Feb; 316(2):815-20. PubMed ID: 7864638 [TBL] [Abstract][Full Text] [Related]
18. Reduction of oxygen by NADH/NADH dehydrogenase in the presence of adriamycin. Thornalley PJ; Bannister WH; Bannister JV Free Radic Res Commun; 1986; 2(3):163-71. PubMed ID: 2850270 [TBL] [Abstract][Full Text] [Related]
19. NADH oxidation in submitochondrial particles protects respiratory chain activity against damage by adriamycin-Fe3+. Demant EJ Eur J Biochem; 1983 Dec; 137(1-2):113-8. PubMed ID: 6317378 [TBL] [Abstract][Full Text] [Related]
20. [Structural and kinetic parameters of the oxidative phosphorylation system, participating in the synchronization of mitochondrial respiratory chain and ATP-synthetase functions]. Marshanskiĭ VN; Krasinskaia IP; Dragunova SF; Iaguzhinskiĭ LS Biokhimiia; 1984 Mar; 49(3):403-8. PubMed ID: 6326863 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]