These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 27196438)

  • 1. Fast Knoevenagel Condensations Catalyzed by an Artificial Schiff-Base-Forming Enzyme.
    Garrabou X; Wicky BI; Hilvert D
    J Am Chem Soc; 2016 Jun; 138(22):6972-4. PubMed ID: 27196438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Promiscuous De Novo Retro-Aldolase Catalyzes Asymmetric Michael Additions via Schiff Base Intermediates.
    Garrabou X; Beck T; Hilvert D
    Angew Chem Int Ed Engl; 2015 May; 54(19):5609-12. PubMed ID: 25777153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemoselective Henry Condensations Catalyzed by Artificial Carboligases.
    Garrabou X; Macdonald DS; Hilvert D
    Chemistry; 2017 May; 23(25):6001-6003. PubMed ID: 28070900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stereodivergent Evolution of Artificial Enzymes for the Michael Reaction.
    Garrabou X; Macdonald DS; Wicky BIM; Hilvert D
    Angew Chem Int Ed Engl; 2018 May; 57(19):5288-5291. PubMed ID: 29446221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of Enzyme Mechanism along the Evolutionary Trajectory of a Computationally Designed (Retro-)Aldolase.
    Zeymer C; Zschoche R; Hilvert D
    J Am Chem Soc; 2017 Sep; 139(36):12541-12549. PubMed ID: 28783336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective irreversible inhibition of fructose 1,6-bisphosphate aldolase from Trypanosoma brucei.
    Dax C; Duffieux F; Chabot N; Coincon M; Sygusch J; Michels PA; Blonski C
    J Med Chem; 2006 Mar; 49(5):1499-502. PubMed ID: 16509566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breaking the Dogma of Aldolase Specificity: Simple Aliphatic Ketones and Aldehydes are Nucleophiles for Fructose-6-phosphate Aldolase.
    Roldán R; Sanchez-Moreno I; Scheidt T; Hélaine V; Lemaire M; Parella T; Clapés P; Fessner WD; Guérard-Hélaine C
    Chemistry; 2017 Apr; 23(21):5005-5009. PubMed ID: 28266745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lysine-146 of rabbit muscle aldolase is essential for cleavage and condensation of the C3-C4 bond of fructose 1,6-bis(phosphate).
    Morris AJ; Tolan DR
    Biochemistry; 1994 Oct; 33(40):12291-7. PubMed ID: 7918450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emergence of a catalytic tetrad during evolution of a highly active artificial aldolase.
    Obexer R; Godina A; Garrabou X; Mittl PR; Baker D; Griffiths AD; Hilvert D
    Nat Chem; 2017 Jan; 9(1):50-56. PubMed ID: 27995916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A lysine to arginine substitution at position 146 of rabbit aldolase A changes the rate-determining step to Schiff base formation.
    Morris AJ; Davenport RC; Tolan DR
    Protein Eng; 1996 Jan; 9(1):61-7. PubMed ID: 9053904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient laboratory evolution of computationally designed enzymes with low starting activities using fluorescence-activated droplet sorting.
    Obexer R; Pott M; Zeymer C; Griffiths AD; Hilvert D
    Protein Eng Des Sel; 2016 Sep; 29(9):355-66. PubMed ID: 27542390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of a designed retro-aldolase leads to complete active site remodeling.
    Giger L; Caner S; Obexer R; Kast P; Baker D; Ban N; Hilvert D
    Nat Chem Biol; 2013 Aug; 9(8):494-8. PubMed ID: 23748672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of the Schiff base forming fructose-1,6-bisphosphate aldolase: structural analysis of reaction intermediates.
    Lorentzen E; Siebers B; Hensel R; Pohl E
    Biochemistry; 2005 Mar; 44(11):4222-9. PubMed ID: 15766250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis for the bifunctionality of fructose-1,6-bisphosphate aldolase/phosphatase.
    Fushinobu S; Nishimasu H; Hattori D; Song HJ; Wakagi T
    Nature; 2011 Oct; 478(7370):538-41. PubMed ID: 21983966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering a Promiscuous Tautomerase into a More Efficient Aldolase for Self-Condensations of Linear Aliphatic Aldehydes.
    Rahimi M; van der Meer JY; Geertsema EM; Poelarends GJ
    Chembiochem; 2017 Jul; 18(14):1435-1441. PubMed ID: 28426139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Presteady-state kinetic evidence for a ring-opening activity in fructose-1,6-(bis)phosphate aldolase.
    Choi KH; Tolan DR
    J Am Chem Soc; 2004 Mar; 126(11):3402-3. PubMed ID: 15025449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate-selective mechanisms in biocatalysis demonstrated with a versatile and efficient aldolase antibody.
    Shulman H; Keinan E
    Bioorg Med Chem Lett; 1999 Jul; 9(13):1745-50. PubMed ID: 10406635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibody-catalyzed benzoin oxidation as a mechanistic probe for nucleophilic catalysis by an active site lysine.
    Sklute G; Oizerowich R; Shulman H; Keinan E
    Chemistry; 2004 May; 10(9):2159-65. PubMed ID: 15112204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charge stabilization and entropy reduction of central lysine residues in fructose-bisphosphate aldolase.
    St-Jean M; Blonski C; Sygusch J
    Biochemistry; 2009 Jun; 48(21):4528-37. PubMed ID: 19354220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploration of alternate catalytic mechanisms and optimization strategies for retroaldolase design.
    Bjelic S; Kipnis Y; Wang L; Pianowski Z; Vorobiev S; Su M; Seetharaman J; Xiao R; Kornhaber G; Hunt JF; Tong L; Hilvert D; Baker D
    J Mol Biol; 2014 Jan; 426(1):256-71. PubMed ID: 24161950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.