These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 27196628)

  • 1. Titanium Oxide Crystallization and Interface Defect Passivation for High Performance Insulator-Protected Schottky Junction MIS Photoanodes.
    Scheuermann AG; Lawrence JP; Meng AC; Tang K; Hendricks OL; Chidsey CE; McIntyre PC
    ACS Appl Mater Interfaces; 2016 Jun; 8(23):14596-603. PubMed ID: 27196628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolating the Photovoltaic Junction: Atomic Layer Deposited TiO2-RuO2 Alloy Schottky Contacts for Silicon Photoanodes.
    Hendricks OL; Scheuermann AG; Schmidt M; Hurley PK; McIntyre PC; Chidsey CE
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):23763-73. PubMed ID: 27548719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design principles for maximizing photovoltage in metal-oxide-protected water-splitting photoanodes.
    Scheuermann AG; Lawrence JP; Kemp KW; Ito T; Walsh A; Chidsey CE; Hurley PK; McIntyre PC
    Nat Mater; 2016 Jan; 15(1):99-105. PubMed ID: 26480231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Interfacial Silicon Dioxide for Improved Metal-Insulator-Semiconductor Silicon Photoanode Water Splitting Performance.
    Satterthwaite PF; Scheuermann AG; Hurley PK; Chidsey CE; McIntyre PC
    ACS Appl Mater Interfaces; 2016 May; 8(20):13140-9. PubMed ID: 27096845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of structure and processing on the behavior of TiO2 protective layers for stabilization of n-Si/TiO2/Ni photoanodes for water oxidation.
    McDowell MT; Lichterman MF; Carim AI; Liu R; Hu S; Brunschwig BS; Lewis NS
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15189-99. PubMed ID: 26083827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial engineering of metal-insulator-semiconductor junctions for efficient and stable photoelectrochemical water oxidation.
    Digdaya IA; Adhyaksa GWP; Trześniewski BJ; Garnett EC; Smith WA
    Nat Commun; 2017 Jun; 8():15968. PubMed ID: 28660883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. General Considerations for Improving Photovoltage in Metal-Insulator-Semiconductor Photoanodes.
    Digdaya IA; Trześniewski BJ; Adhyaksa GWP; Garnett EC; Smith WA
    J Phys Chem C Nanomater Interfaces; 2018 Mar; 122(10):5462-5471. PubMed ID: 29568340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theory and Simulation of Metal-Insulator-Semiconductor (MIS) Photoelectrodes.
    King AJ; Weber AZ; Bell AT
    ACS Appl Mater Interfaces; 2023 May; 15(19):23024-23039. PubMed ID: 37154402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Facile Surface Passivation of Hematite Photoanodes with TiO2 Overlayers for Efficient Solar Water Splitting.
    Ahmed MG; Kretschmer IE; Kandiel TA; Ahmed AY; Rashwan FA; Bahnemann DW
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24053-62. PubMed ID: 26488924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal Silicidation in Conjunction with Dopant Segregation: A Promising Strategy for Fabricating High-Performance Silicon-Based Photoanodes.
    Li S; She G; Xu J; Zhang S; Zhang H; Mu L; Ge C; Jin K; Luo J; Shi W
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39092-39097. PubMed ID: 32805824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation.
    Chen YW; Prange JD; Dühnen S; Park Y; Gunji M; Chidsey CE; McIntyre PC
    Nat Mater; 2011 Jun; 10(7):539-44. PubMed ID: 21685904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insight into the Degradation Mechanisms of Atomic Layer Deposited TiO
    Ros C; Carretero NM; David J; Arbiol J; Andreu T; Morante JR
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):29725-29735. PubMed ID: 31347833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficiency Enhancement of Nanotextured Black Silicon Solar Cells Using Al2O3/TiO2 Dual-Layer Passivation Stack Prepared by Atomic Layer Deposition.
    Wang WC; Tsai MC; Yang J; Hsu C; Chen MJ
    ACS Appl Mater Interfaces; 2015 May; 7(19):10228-37. PubMed ID: 25919200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering the Inhomogeneity of Metal-Insulator-Semiconductor Junctions for Photoelectrochemical Methanol Oxidation.
    Li Y; Ding C; Li Y; Zeng J; Kang C; Chen H; Wang L; He J; Li C
    ACS Appl Mater Interfaces; 2023 Dec; 15(51):59403-59412. PubMed ID: 38104346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interface Engineering of TiO
    Saari J; Ali-Löytty H; Honkanen M; Tukiainen A; Lahtonen K; Valden M
    ACS Omega; 2021 Oct; 6(41):27501-27509. PubMed ID: 34693171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revealing the Role of TiO2 Surface Treatment of Hematite Nanorods Photoanodes for Solar Water Splitting.
    Li X; Bassi PS; Boix PP; Fang Y; Wong LH
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):16960-6. PubMed ID: 26192330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Role of Catalyst Adhesion in ALD-TiO
    Tang-Kong R; Winter R; Brock R; Tracy J; Eizenberg M; Dauskardt RH; McIntyre PC
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37103-37109. PubMed ID: 30346686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scalable, highly stable Si-based metal-insulator-semiconductor photoanodes for water oxidation fabricated using thin-film reactions and electrodeposition.
    Lee S; Ji L; De Palma AC; Yu ET
    Nat Commun; 2021 Jun; 12(1):3982. PubMed ID: 34172754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Interfacial SiO
    Ragonese P; Kalinic B; Franco L; Girardi L; Fernández Peréz BM; Carbonera D; Mattei G; Rizzi GA; Maurizio C
    ACS Appl Mater Interfaces; 2023 Oct; 15(40):46933-46940. PubMed ID: 37782757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amorphous TiO₂ coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation.
    Hu S; Shaner MR; Beardslee JA; Lichterman M; Brunschwig BS; Lewis NS
    Science; 2014 May; 344(6187):1005-9. PubMed ID: 24876492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.