These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
498 related articles for article (PubMed ID: 27196928)
1. ADAM and ADAMTS Family Proteins and Snake Venom Metalloproteinases: A Structural Overview. Takeda S Toxins (Basel); 2016 May; 8(5):. PubMed ID: 27196928 [TBL] [Abstract][Full Text] [Related]
2. Snake venom metalloproteinases: structure, function and relevance to the mammalian ADAM/ADAMTS family proteins. Takeda S; Takeya H; Iwanaga S Biochim Biophys Acta; 2012 Jan; 1824(1):164-76. PubMed ID: 21530690 [TBL] [Abstract][Full Text] [Related]
3. Three-dimensional domain architecture of the ADAM family proteinases. Takeda S Semin Cell Dev Biol; 2009 Apr; 20(2):146-52. PubMed ID: 18706512 [TBL] [Abstract][Full Text] [Related]
4. Structure and function of snake venom toxins interacting with human von Willebrand factor. Matsui T; Hamako J Toxicon; 2005 Jun; 45(8):1075-87. PubMed ID: 15922776 [TBL] [Abstract][Full Text] [Related]
5. The cysteine-rich domain of snake venom metalloproteinases is a ligand for von Willebrand factor A domains: role in substrate targeting. Serrano SM; Kim J; Wang D; Dragulev B; Shannon JD; Mann HH; Veit G; Wagener R; Koch M; Fox JW J Biol Chem; 2006 Dec; 281(52):39746-56. PubMed ID: 17040908 [TBL] [Abstract][Full Text] [Related]
6. Crystal structures of human ADAMTS-1 reveal a conserved catalytic domain and a disintegrin-like domain with a fold homologous to cysteine-rich domains. Gerhardt S; Hassall G; Hawtin P; McCall E; Flavell L; Minshull C; Hargreaves D; Ting A; Pauptit RA; Parker AE; Abbott WM J Mol Biol; 2007 Nov; 373(4):891-902. PubMed ID: 17897672 [TBL] [Abstract][Full Text] [Related]
7. Hemorrhagin VaH4, a covalent heterodimeric P-III metalloproteinase from Vipera ammodytes ammodytes with a potential antitumour activity. Leonardi A; Sajevic T; Kovačič L; Pungerčar J; Lang Balija M; Halassy B; Trampuš Bakija A; Križaj I Toxicon; 2014 Jan; 77():141-55. PubMed ID: 24269369 [TBL] [Abstract][Full Text] [Related]
8. Mapping von Willebrand factor A domain binding sites on a snake venom metalloproteinase cysteine-rich domain. Pinto AF; Terra RM; Guimaraes JA; Fox JW Arch Biochem Biophys; 2007 Jan; 457(1):41-6. PubMed ID: 17118332 [TBL] [Abstract][Full Text] [Related]
9. Crystal structures of catrocollastatin/VAP2B reveal a dynamic, modular architecture of ADAM/adamalysin/reprolysin family proteins. Igarashi T; Araki S; Mori H; Takeda S FEBS Lett; 2007 May; 581(13):2416-22. PubMed ID: 17485084 [TBL] [Abstract][Full Text] [Related]
10. A Disintegrin and Metalloproteinase (ADAM) and ADAM with thrombospondin motifs (ADAMTS) family in vascular biology and disease. Zhong S; Khalil RA Biochem Pharmacol; 2019 Jun; 164():188-204. PubMed ID: 30905657 [TBL] [Abstract][Full Text] [Related]
11. On the ancestral recruitment of metalloproteinases into the venom of snakes. Casewell NR Toxicon; 2012 Sep; 60(4):449-54. PubMed ID: 22406471 [TBL] [Abstract][Full Text] [Related]
12. Snake venom metalloproteinases: structure, function and relationship to the ADAMs family of proteins. Jia LG; Shimokawa K; Bjarnason JB; Fox JW Toxicon; 1996; 34(11-12):1269-76. PubMed ID: 9027982 [TBL] [Abstract][Full Text] [Related]
13. The Biochemistry and Physiology of A Disintegrin and Metalloproteinases (ADAMs and ADAM-TSs) in Human Pathologies. Sharma D; Singh NK Rev Physiol Biochem Pharmacol; 2023; 184():69-120. PubMed ID: 35061104 [TBL] [Abstract][Full Text] [Related]
14. A Metalloproteinase Cocktail from the Venom of Futai E; Kawasaki H; Sato S; Daoudi K; Hidaka M; Tomita T; Ogawa T Toxins (Basel); 2023 Aug; 15(8):. PubMed ID: 37624257 [TBL] [Abstract][Full Text] [Related]
15. Emerging roles of ADAM and ADAMTS metalloproteinases in cancer. Rocks N; Paulissen G; El Hour M; Quesada F; Crahay C; Gueders M; Foidart JM; Noel A; Cataldo D Biochimie; 2008 Feb; 90(2):369-79. PubMed ID: 17920749 [TBL] [Abstract][Full Text] [Related]
16. Crystal structure of RVV-X: an example of evolutionary gain of specificity by ADAM proteinases. Takeda S; Igarashi T; Mori H FEBS Lett; 2007 Dec; 581(30):5859-64. PubMed ID: 18060879 [TBL] [Abstract][Full Text] [Related]
17. Role of ADAM and ADAMTS metalloproteinases in airway diseases. Paulissen G; Rocks N; Gueders MM; Crahay C; Quesada-Calvo F; Bekaert S; Hacha J; El Hour M; Foidart JM; Noel A; Cataldo DD Respir Res; 2009 Dec; 10(1):127. PubMed ID: 20034386 [TBL] [Abstract][Full Text] [Related]
18. ADAM Metalloproteinases as Potential Drug Targets. Camodeca C; Cuffaro D; Nuti E; Rossello A Curr Med Chem; 2019; 26(15):2661-2689. PubMed ID: 29589526 [TBL] [Abstract][Full Text] [Related]
19. Mass spectrophotometric evidence for P-III/P-IV metalloproteinases in the venom of the Boomslang (Dispholidus typus). Kamiguti AS; Theakston RD; Sherman N; Fox JW Toxicon; 2000 Nov; 38(11):1613-20. PubMed ID: 10775761 [TBL] [Abstract][Full Text] [Related]
20. Snake venom metalloproteinase containing a disintegrin-like domain, its structure-activity relationships at interacting with integrins. Lu X; Lu D; Scully MF; Kakkar VV Curr Med Chem Cardiovasc Hematol Agents; 2005 Jul; 3(3):249-60. PubMed ID: 15974889 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]