BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

499 related articles for article (PubMed ID: 27196928)

  • 1. ADAM and ADAMTS Family Proteins and Snake Venom Metalloproteinases: A Structural Overview.
    Takeda S
    Toxins (Basel); 2016 May; 8(5):. PubMed ID: 27196928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Snake venom metalloproteinases: structure, function and relevance to the mammalian ADAM/ADAMTS family proteins.
    Takeda S; Takeya H; Iwanaga S
    Biochim Biophys Acta; 2012 Jan; 1824(1):164-76. PubMed ID: 21530690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional domain architecture of the ADAM family proteinases.
    Takeda S
    Semin Cell Dev Biol; 2009 Apr; 20(2):146-52. PubMed ID: 18706512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and function of snake venom toxins interacting with human von Willebrand factor.
    Matsui T; Hamako J
    Toxicon; 2005 Jun; 45(8):1075-87. PubMed ID: 15922776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cysteine-rich domain of snake venom metalloproteinases is a ligand for von Willebrand factor A domains: role in substrate targeting.
    Serrano SM; Kim J; Wang D; Dragulev B; Shannon JD; Mann HH; Veit G; Wagener R; Koch M; Fox JW
    J Biol Chem; 2006 Dec; 281(52):39746-56. PubMed ID: 17040908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structures of human ADAMTS-1 reveal a conserved catalytic domain and a disintegrin-like domain with a fold homologous to cysteine-rich domains.
    Gerhardt S; Hassall G; Hawtin P; McCall E; Flavell L; Minshull C; Hargreaves D; Ting A; Pauptit RA; Parker AE; Abbott WM
    J Mol Biol; 2007 Nov; 373(4):891-902. PubMed ID: 17897672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hemorrhagin VaH4, a covalent heterodimeric P-III metalloproteinase from Vipera ammodytes ammodytes with a potential antitumour activity.
    Leonardi A; Sajevic T; Kovačič L; Pungerčar J; Lang Balija M; Halassy B; Trampuš Bakija A; Križaj I
    Toxicon; 2014 Jan; 77():141-55. PubMed ID: 24269369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping von Willebrand factor A domain binding sites on a snake venom metalloproteinase cysteine-rich domain.
    Pinto AF; Terra RM; Guimaraes JA; Fox JW
    Arch Biochem Biophys; 2007 Jan; 457(1):41-6. PubMed ID: 17118332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structures of catrocollastatin/VAP2B reveal a dynamic, modular architecture of ADAM/adamalysin/reprolysin family proteins.
    Igarashi T; Araki S; Mori H; Takeda S
    FEBS Lett; 2007 May; 581(13):2416-22. PubMed ID: 17485084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Disintegrin and Metalloproteinase (ADAM) and ADAM with thrombospondin motifs (ADAMTS) family in vascular biology and disease.
    Zhong S; Khalil RA
    Biochem Pharmacol; 2019 Jun; 164():188-204. PubMed ID: 30905657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the ancestral recruitment of metalloproteinases into the venom of snakes.
    Casewell NR
    Toxicon; 2012 Sep; 60(4):449-54. PubMed ID: 22406471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Snake venom metalloproteinases: structure, function and relationship to the ADAMs family of proteins.
    Jia LG; Shimokawa K; Bjarnason JB; Fox JW
    Toxicon; 1996; 34(11-12):1269-76. PubMed ID: 9027982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Biochemistry and Physiology of A Disintegrin and Metalloproteinases (ADAMs and ADAM-TSs) in Human Pathologies.
    Sharma D; Singh NK
    Rev Physiol Biochem Pharmacol; 2023; 184():69-120. PubMed ID: 35061104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Metalloproteinase Cocktail from the Venom of
    Futai E; Kawasaki H; Sato S; Daoudi K; Hidaka M; Tomita T; Ogawa T
    Toxins (Basel); 2023 Aug; 15(8):. PubMed ID: 37624257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emerging roles of ADAM and ADAMTS metalloproteinases in cancer.
    Rocks N; Paulissen G; El Hour M; Quesada F; Crahay C; Gueders M; Foidart JM; Noel A; Cataldo D
    Biochimie; 2008 Feb; 90(2):369-79. PubMed ID: 17920749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of RVV-X: an example of evolutionary gain of specificity by ADAM proteinases.
    Takeda S; Igarashi T; Mori H
    FEBS Lett; 2007 Dec; 581(30):5859-64. PubMed ID: 18060879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of ADAM and ADAMTS metalloproteinases in airway diseases.
    Paulissen G; Rocks N; Gueders MM; Crahay C; Quesada-Calvo F; Bekaert S; Hacha J; El Hour M; Foidart JM; Noel A; Cataldo DD
    Respir Res; 2009 Dec; 10(1):127. PubMed ID: 20034386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ADAM Metalloproteinases as Potential Drug Targets.
    Camodeca C; Cuffaro D; Nuti E; Rossello A
    Curr Med Chem; 2019; 26(15):2661-2689. PubMed ID: 29589526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass spectrophotometric evidence for P-III/P-IV metalloproteinases in the venom of the Boomslang (Dispholidus typus).
    Kamiguti AS; Theakston RD; Sherman N; Fox JW
    Toxicon; 2000 Nov; 38(11):1613-20. PubMed ID: 10775761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Snake venom metalloproteinase containing a disintegrin-like domain, its structure-activity relationships at interacting with integrins.
    Lu X; Lu D; Scully MF; Kakkar VV
    Curr Med Chem Cardiovasc Hematol Agents; 2005 Jul; 3(3):249-60. PubMed ID: 15974889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.