BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 27196945)

  • 1. Facile One-Step Strategy for Highly Boosted Microbial Extracellular Electron Transfer of the Genus Shewanella.
    Wang Y; Lv M; Meng Q; Ding C; Jiang L; Liu H
    ACS Nano; 2016 Jun; 10(6):6331-7. PubMed ID: 27196945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wettability-regulated extracellular electron transfer from the living organism of Shewanella loihica PV-4.
    Ding CM; Lv ML; Zhu Y; Jiang L; Liu H
    Angew Chem Int Ed Engl; 2015 Jan; 54(5):1446-51. PubMed ID: 25470810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shewanella putrefaciens CN32 outer membrane cytochromes MtrC and UndA reduce electron shuttles to produce electricity in microbial fuel cells.
    Wu X; Zou L; Huang Y; Qiao Y; Long ZE; Liu H; Li CM
    Enzyme Microb Technol; 2018 Aug; 115():23-28. PubMed ID: 29859599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Core/Shell Bacterial Cables: A One-Dimensional Platform for Probing Microbial Electron Transfer.
    Hsu L; Deng P; Zhang Y; Jiang X
    Nano Lett; 2018 Jul; 18(7):4606-4610. PubMed ID: 29923733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On-going applications of Shewanella species in microbial electrochemical system for bioenergy, bioremediation and biosensing.
    Zou L; Huang YH; Long ZE; Qiao Y
    World J Microbiol Biotechnol; 2018 Dec; 35(1):9. PubMed ID: 30569420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modular Engineering Intracellular NADH Regeneration Boosts Extracellular Electron Transfer of Shewanella oneidensis MR-1.
    Li F; Li Y; Sun L; Chen X; An X; Yin C; Cao Y; Wu H; Song H
    ACS Synth Biol; 2018 Mar; 7(3):885-895. PubMed ID: 29429342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatiotemporal Mapping of Extracellular Electron Transfer Flux in a Microbial Fuel Cell Using an Oblique Incident Reflectivity Difference Technique.
    Fang C; Li J; Feng Z; Li X; Cheng M; Qiao Y; Hu W
    Anal Chem; 2022 Aug; 94(30):10841-10849. PubMed ID: 35863931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism and applications of bidirectional extracellular electron transfer of
    Zang Y; Cao B; Zhao H; Xie B; Ge Y; Liu H; Yi Y
    Environ Sci Process Impacts; 2023 Dec; 25(12):1863-1877. PubMed ID: 37787043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exogenous electron shuttle-mediated extracellular electron transfer of Shewanella putrefaciens 200: electrochemical parameters and thermodynamics.
    Wu Y; Liu T; Li X; Li F
    Environ Sci Technol; 2014 Aug; 48(16):9306-14. PubMed ID: 25058026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial extracellular electron transfer and strategies for engineering electroactive microorganisms.
    Zhao J; Li F; Cao Y; Zhang X; Chen T; Song H; Wang Z
    Biotechnol Adv; 2021 Dec; 53():107682. PubMed ID: 33326817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electromicrobiology: realities, grand challenges, goals and predictions.
    Nealson KH; Rowe AR
    Microb Biotechnol; 2016 Sep; 9(5):595-600. PubMed ID: 27506517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfur-Mediated Electron Shuttling Sustains Microbial Long-Distance Extracellular Electron Transfer with the Aid of Metallic Iron Sulfides.
    Kondo K; Okamoto A; Hashimoto K; Nakamura R
    Langmuir; 2015 Jul; 31(26):7427-34. PubMed ID: 26070345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenothiazine derivative-accelerated microbial extracellular electron transfer in bioelectrochemical system.
    Liu XW; Sun XF; Chen JJ; Huang YX; Xie JF; Li WW; Sheng GP; Zhang YY; Zhao F; Lu R; Yu HQ
    Sci Rep; 2013; 3():1616. PubMed ID: 23563590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailoring Surface Properties of Electrodes for Synchronous Enhanced Extracellular Electron Transfer and Enriched Exoelectrogens in Microbial Fuel Cells.
    Li Y; Liu J; Chen X; Wu J; Li N; He W; Feng Y
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):58508-58521. PubMed ID: 34871496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoelectronic Investigation Reveals the Electrochemical Basis of Electrical Conductivity in Shewanella and Geobacter.
    Ding M; Shiu HY; Li SL; Lee CK; Wang G; Wu H; Weiss NO; Young TD; Weiss PS; Wong GC; Nealson KH; Huang Y; Duan X
    ACS Nano; 2016 Nov; 10(11):9919-9926. PubMed ID: 27787972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conduction-band edge dependence of carbon-coated hematite stimulated extracellular electron transfer of Shewanella oneidensis in bioelectrochemical systems.
    Zhou S; Tang J; Yuan Y
    Bioelectrochemistry; 2015 Apr; 102():29-34. PubMed ID: 25483997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trace heavy metal ions promoted extracellular electron transfer and power generation by Shewanella in microbial fuel cells.
    Xu YS; Zheng T; Yong XY; Zhai DD; Si RW; Li B; Yu YY; Yong YC
    Bioresour Technol; 2016 Jul; 211():542-7. PubMed ID: 27038263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical Characteristics of
    Wang S; Zhang X; Marsili E
    Molecules; 2022 Aug; 27(16):. PubMed ID: 36014568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facilitated extracellular electron transfer of Shewanella loihica PV-4 by antimony-doped tin oxide nanoparticles as active microelectrodes.
    Zhang X; Liu H; Wang J; Ren G; Xie B; Liu H; Zhu Y; Jiang L
    Nanoscale; 2015 Nov; 7(44):18763-9. PubMed ID: 26505239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modular engineering to increase intracellular NAD(H/
    Li F; Li YX; Cao YX; Wang L; Liu CG; Shi L; Song H
    Nat Commun; 2018 Sep; 9(1):3637. PubMed ID: 30194293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.