BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

445 related articles for article (PubMed ID: 27197215)

  • 1. Large-scale analysis of genome and transcriptome alterations in multiple tumors unveils novel cancer-relevant splicing networks.
    Sebestyén E; Singh B; Miñana B; Pagès A; Mateo F; Pujana MA; Valcárcel J; Eyras E
    Genome Res; 2016 Jun; 26(6):732-44. PubMed ID: 27197215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome-wide identification and study of cancer-specific splicing events across multiple tumors.
    Tsai YS; Dominguez D; Gomez SM; Wang Z
    Oncotarget; 2015 Mar; 6(9):6825-39. PubMed ID: 25749525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes.
    Sveen A; Kilpinen S; Ruusulehto A; Lothe RA; Skotheim RI
    Oncogene; 2016 May; 35(19):2413-27. PubMed ID: 26300000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide analysis of alternative transcripts in human breast cancer.
    Wen J; Toomer KH; Chen Z; Cai X
    Breast Cancer Res Treat; 2015 Jun; 151(2):295-307. PubMed ID: 25913416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of alternative splicing in cancer: From oncogenesis to drug resistance.
    Sciarrillo R; Wojtuszkiewicz A; Assaraf YG; Jansen G; Kaspers GJL; Giovannetti E; Cloos J
    Drug Resist Updat; 2020 Dec; 53():100728. PubMed ID: 33070093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of alternative splicing in cancer.
    Singh B; Eyras E
    Transcription; 2017 Mar; 8(2):91-98. PubMed ID: 28005460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome Sequencing and RNA-Motif Analysis Reveal Novel Damaging Noncoding Mutations in Human Tumors.
    Singh B; Trincado JL; Tatlow PJ; Piccolo SR; Eyras E
    Mol Cancer Res; 2018 Jul; 16(7):1112-1124. PubMed ID: 29592900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of recurrent regulated alternative splicing events across human solid tumors.
    Danan-Gotthold M; Golan-Gerstl R; Eisenberg E; Meir K; Karni R; Levanon EY
    Nucleic Acids Res; 2015 May; 43(10):5130-44. PubMed ID: 25908786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Splicing-factor alterations in cancers.
    Anczuków O; Krainer AR
    RNA; 2016 Sep; 22(9):1285-301. PubMed ID: 27530828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cancer-associated regulation of alternative splicing.
    Venables JP; Klinck R; Koh C; Gervais-Bird J; Bramard A; Inkel L; Durand M; Couture S; Froehlich U; Lapointe E; Lucier JF; Thibault P; Rancourt C; Tremblay K; Prinos P; Chabot B; Elela SA
    Nat Struct Mol Biol; 2009 Jun; 16(6):670-6. PubMed ID: 19448617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global profiling of alternative RNA splicing events provides insights into molecular differences between various types of hepatocellular carcinoma.
    Tremblay MP; Armero VE; Allaire A; Boudreault S; Martenon-Brodeur C; Durand M; Lapointe E; Thibault P; Tremblay-Létourneau M; Perreault JP; Scott MS; Bisaillon M
    BMC Genomics; 2016 Aug; 17(1):683. PubMed ID: 27565572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome and transcriptome sequencing of lung cancers reveal diverse mutational and splicing events.
    Liu J; Lee W; Jiang Z; Chen Z; Jhunjhunwala S; Haverty PM; Gnad F; Guan Y; Gilbert HN; Stinson J; Klijn C; Guillory J; Bhatt D; Vartanian S; Walter K; Chan J; Holcomb T; Dijkgraaf P; Johnson S; Koeman J; Minna JD; Gazdar AF; Stern HM; Hoeflich KP; Wu TD; Settleman J; de Sauvage FJ; Gentleman RC; Neve RM; Stokoe D; Modrusan Z; Seshagiri S; Shames DS; Zhang Z
    Genome Res; 2012 Dec; 22(12):2315-27. PubMed ID: 23033341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutational landscape of RNA-binding proteins in human cancers.
    Neelamraju Y; Gonzalez-Perez A; Bhat-Nakshatri P; Nakshatri H; Janga SC
    RNA Biol; 2018 Jan; 15(1):115-129. PubMed ID: 29023197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aberrant posttranscriptional processing of hyaluronan synthase 1 in malignant transformation and tumor progression.
    Adamia S; Kriangkum J; Belch AR; Pilarski LM
    Adv Cancer Res; 2014; 123():67-94. PubMed ID: 25081526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alternative splicing: global insights.
    Hallegger M; Llorian M; Smith CW
    FEBS J; 2010 Feb; 277(4):856-66. PubMed ID: 20082635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Functional Impact of Alternative Splicing in Cancer.
    Climente-González H; Porta-Pardo E; Godzik A; Eyras E
    Cell Rep; 2017 Aug; 20(9):2215-2226. PubMed ID: 28854369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A saga of cancer epigenetics: linking epigenetics to alternative splicing.
    Narayanan SP; Singh S; Shukla S
    Biochem J; 2017 Mar; 474(6):885-896. PubMed ID: 28270561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. rMAPS: RNA map analysis and plotting server for alternative exon regulation.
    Park JW; Jung S; Rouchka EC; Tseng YT; Xing Y
    Nucleic Acids Res; 2016 Jul; 44(W1):W333-8. PubMed ID: 27174931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Opportunities and methods for studying alternative splicing in cancer with RNA-Seq.
    Feng H; Qin Z; Zhang X
    Cancer Lett; 2013 Nov; 340(2):179-91. PubMed ID: 23196057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternative-splicing defects in cancer: Splicing regulators and their downstream targets, guiding the way to novel cancer therapeutics.
    Urbanski LM; Leclair N; Anczuków O
    Wiley Interdiscip Rev RNA; 2018 Jul; 9(4):e1476. PubMed ID: 29693319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.