These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 27197385)

  • 1. Estimating where and how animals travel: an optimal framework for path reconstruction from autocorrelated tracking data.
    Fleming CH; Fagan WF; Mueller T; Olson KA; Leimgruber P; Calabrese JM
    Ecology; 2016 Mar; 97(3):576-82. PubMed ID: 27197385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rigorous home range estimation with movement data: a new autocorrelated kernel density estimator.
    Fleming CH; Fagan WF; Mueller T; Olson KA; Leimgruber P; Calabrese JM
    Ecology; 2015 May; 96(5):1182-8. PubMed ID: 26236833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analyzing animal movements using Brownian bridges.
    Horne JS; Garton EO; Krone SM; Lewis JS
    Ecology; 2007 Sep; 88(9):2354-63. PubMed ID: 17918412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Animal movement constraints improve resource selection inference in the presence of telemetry error.
    Brost BM; Hooten MB; Hanks EM; Small RJ
    Ecology; 2015 Oct; 96(10):2590-7. PubMed ID: 26649380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing the search for resources by sharing information: Mongolian gazelles as a case study.
    Martínez-García R; Calabrese JM; Mueller T; Olson KA; López C
    Phys Rev Lett; 2013 Jun; 110(24):248106. PubMed ID: 25165967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating animal resource selection from telemetry data using point process models.
    Johnson DS; Hooten MB; Kuhn CE
    J Anim Ecol; 2013 Nov; 82(6):1155-64. PubMed ID: 23800202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A general framework for the analysis of animal resource selection from telemetry data.
    Johnson DS; Thomas DL; Ver Hoef JM; Christ A
    Biometrics; 2008 Sep; 64(3):968-976. PubMed ID: 18047525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resource selection of a nomadic ungulate in a dynamic landscape.
    Stratmann TSM; Dejid N; Calabrese JM; Fagan WF; Fleming CH; Olson KA; Mueller T
    PLoS One; 2021; 16(2):e0246809. PubMed ID: 33577613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using dynamic Brownian bridge movement modelling to measure temporal patterns of habitat selection.
    Byrne ME; Clint McCoy J; Hinton JW; Chamberlain MJ; Collier BA
    J Anim Ecol; 2014 Sep; 83(5):1234-43. PubMed ID: 24460723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inferring spatially varying animal movement characteristics using a hierarchical continuous-time velocity model.
    Paun I; Husmeier D; Hopcraft JGC; Masolele MM; Torney CJ
    Ecol Lett; 2022 Dec; 25(12):2726-2738. PubMed ID: 36256526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scale-insensitive estimation of speed and distance traveled from animal tracking data.
    Noonan MJ; Fleming CH; Akre TS; Drescher-Lehman J; Gurarie E; Harrison AL; Kays R; Calabrese JM
    Mov Ecol; 2019; 7():35. PubMed ID: 31788314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The energy-maintenance strategy of goitered gazelles Gazella subgutturosa during rut.
    Xia C; Liu W; Xu W; Yang W; Xu F; Blank D
    Behav Processes; 2014 Mar; 103():5-8. PubMed ID: 24220795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influences of human and livestock density on winter habitat selection of Mongolian gazelle (Procapra gutturosa).
    Luo Z; Liu B; Liu S; Jiang Z; Halbrook RS
    Zoolog Sci; 2014 Jan; 31(1):20-30. PubMed ID: 24410492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How to reliably estimate the tortuosity of an animal's path: straightness, sinuosity, or fractal dimension?
    Benhamou S
    J Theor Biol; 2004 Jul; 229(2):209-20. PubMed ID: 15207476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bivariate Gaussian bridges: directional factorization of diffusion in Brownian bridge models.
    Kranstauber B; Safi K; Bartumeus F
    Mov Ecol; 2014; 2(1):5. PubMed ID: 25937928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From fine-scale foraging to home ranges: a semivariance approach to identifying movement modes across spatiotemporal scales.
    Fleming CH; Calabrese JM; Mueller T; Olson KA; Leimgruber P; Fagan WF
    Am Nat; 2014 May; 183(5):E154-67. PubMed ID: 24739204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A framework for analyzing the robustness of movement models to variable step discretization.
    Schlägel UE; Lewis MA
    J Math Biol; 2016 Oct; 73(4):815-45. PubMed ID: 26852021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From single steps to mass migration: the problem of scale in the movement ecology of the Serengeti wildebeest.
    Torney CJ; Hopcraft JGC; Morrison TA; Couzin ID; Levin SA
    Philos Trans R Soc Lond B Biol Sci; 2018 May; 373(1746):. PubMed ID: 29581397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A dynamic Brownian bridge movement model to estimate utilization distributions for heterogeneous animal movement.
    Kranstauber B; Kays R; Lapoint SD; Wikelski M; Safi K
    J Anim Ecol; 2012 Jul; 81(4):738-46. PubMed ID: 22348740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous-time correlated random walk model for animal telemetry data.
    Johnson DS; London JM; Lea MA; Durban JW
    Ecology; 2008 May; 89(5):1208-15. PubMed ID: 18543615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.