BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 27197396)

  • 21. Terrestrial contributions to the aquatic food web in the middle Yangtze River.
    Wang J; Gu B; Huang J; Han X; Lin G; Zheng F; Li Y
    PLoS One; 2014; 9(7):e102473. PubMed ID: 25047656
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbon and nitrogen transfer from a desert stream to riparian predators.
    Sanzone DM; Meyer JL; Marti E; Gardiner EP; Tank JL; Grimm NB
    Oecologia; 2003 Jan; 134(2):238-50. PubMed ID: 12647165
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mercury bioaccumulation in temperate forest food webs associated with headwater streams.
    Rodenhouse NL; Lowe WH; Gebauer RLE; McFarland KP; Bank MS
    Sci Total Environ; 2019 May; 665():1125-1134. PubMed ID: 30893744
    [TBL] [Abstract][Full Text] [Related]  

  • 24. How do small dams alter river food webs? A food quality perspective along the aquatic food web continuum.
    Huang J; Guo F; Burford MA; Kainz M; Li F; Gao W; Ouyang X; Zhang Y
    J Environ Manage; 2024 Mar; 355():120501. PubMed ID: 38437746
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Beyond cool: adapting upland streams for climate change using riparian woodlands.
    Thomas SM; Griffiths SW; Ormerod SJ
    Glob Chang Biol; 2016 Jan; 22(1):310-24. PubMed ID: 26395251
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using stable isotope analysis in stream mesocosms to study potential effects of environmental chemicals on aquatic-terrestrial subsidies.
    Wieczorek MV; Kötter D; Gergs R; Schulz R
    Environ Sci Pollut Res Int; 2015 Sep; 22(17):12892-901. PubMed ID: 25586616
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An assessment of assumptions and uncertainty in deuterium-based estimates of terrestrial subsidies to aquatic consumers.
    Brett MT; Holtgrieve GW; Schindler DE
    Ecology; 2018 May; 99(5):1073-1088. PubMed ID: 29714826
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Longitudinal pattern of resource utilization by aquatic consumers along a disturbed subtropical urban river: Estimating the relative contribution of resources with stable isotope analysis.
    Wang S; Wang TT; Xia WT; Chen ZB; Stewart SD; Yang FJ; Cheng G; Wang XD; Wang DY; Xie SG
    Ecol Evol; 2021 Dec; 11(23):16763-16775. PubMed ID: 34938471
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Longitudinal variation in the nutritional quality of basal food sources and its effect on invertebrates and fish in subalpine rivers.
    Guo F; Ebm N; Bunn SE; Brett MT; Hager H; Kainz MJ
    J Anim Ecol; 2021 Nov; 90(11):2678-2691. PubMed ID: 34358339
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The distance that contaminated aquatic subsidies extend into lake riparian zones.
    Raikow DF; Walters DM; Fritz KM; Mills MA
    Ecol Appl; 2011 Apr; 21(3):983-90. PubMed ID: 21639060
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spiders and subsidies: results from the riparian zone of a coastal temperate rainforest.
    Marczak LB; Richardson JS
    J Anim Ecol; 2007 Jul; 76(4):687-94. PubMed ID: 17584374
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An introduced plant affects aquatic-derived carbon in the diets of riparian birds.
    Riedl HL; Stinson L; Pejchar L; Clements WH
    PLoS One; 2018; 13(11):e0207389. PubMed ID: 30481226
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Estimating terrestrial contribution to stream invertebrates and periphyton using a gradient-based mixing model for delta13C.
    Rasmussen JB
    J Anim Ecol; 2010 Mar; 79(2):393-402. PubMed ID: 20039981
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reverberating effects of resource exchanges in stream-riparian food webs.
    Collins SF; Baxter CV; Marcarelli AM; Felicetti L; Florin S; Wipfli MS; Servheen G
    Oecologia; 2020 Jan; 192(1):179-189. PubMed ID: 31828529
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Responses to river inundation pressures control prey selection of riparian beetles.
    O'Callaghan MJ; Hannah DM; Boomer I; Williams M; Sadler JP
    PLoS One; 2013; 8(4):e61866. PubMed ID: 23613958
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The importance of omega-3 polyunsaturated fatty acids as high-quality food in freshwater ecosystems with implications of global change.
    Yan K; Guo F; Kainz MJ; Li F; Gao W; Bunn SE; Zhang Y
    Biol Rev Camb Philos Soc; 2024 Feb; 99(1):200-218. PubMed ID: 37724488
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cross-ecosystem impacts of stream pollution reduce resource and contaminant flux to riparian food webs.
    Kraus JM; Schmidt TS; Walters DM; Wanty RB; Zuellig RE; Wolf RE
    Ecol Appl; 2014 Mar; 24(2):235-43. PubMed ID: 24689137
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Measuring terrestrial subsidies to aquatic food webs using stable isotopes of hydrogen.
    Doucett RR; Marks JC; Blinn DW; Caron M; Hungate BA
    Ecology; 2007 Jun; 88(6):1587-92. PubMed ID: 17601150
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The movement of aquatic mercury through terrestrial food webs.
    Cristol DA; Brasso RL; Condon AM; Fovargue RE; Friedman SL; Hallinger KK; Monroe AP; White AE
    Science; 2008 Apr; 320(5874):335. PubMed ID: 18420925
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioaccumulation and Dispersion of Uranium by Freshwater Organisms.
    Bergmann M; Graça MAS
    Arch Environ Contam Toxicol; 2020 Feb; 78(2):254-266. PubMed ID: 31650202
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.