BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 27197493)

  • 1. [Design and Implementation of a Programmable Wireless Neural Stimulation System].
    Zhang Z; Yu W; Tan Y; Zeng J; Xie G
    Zhongguo Yi Liao Qi Xie Za Zhi; 2016 Jan; 40(1):30-2. PubMed ID: 27197493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 16-Channel biphasic current-mode programmable charge balanced neural stimulation.
    Li X; Zhong S; Morizio J
    Biomed Eng Online; 2017 Aug; 16(1):104. PubMed ID: 28806960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Integrated Wireless Power Management and Data Telemetry IC for High-Compliance-Voltage Electrical Stimulation Applications.
    Zhao J; Yao L; Xue RF; Li P; Je M; Xu YP
    IEEE Trans Biomed Circuits Syst; 2016 Feb; 10(1):113-24. PubMed ID: 25910251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Fully Implantable Wireless Stimulation System for Pigeon Navigation.
    Choi GJ; Seo JM; Song YK; Kim SJ; Jang J; Kim S; Baek C; Yun S; Shim S; Seo J; Jung Y; Seo K
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5310-5313. PubMed ID: 31947055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The PennBMBI: Design of a General Purpose Wireless Brain-Machine-Brain Interface System.
    Liu X; Zhang M; Subei B; Richardson AG; Lucas TH; Van der Spiegel J
    IEEE Trans Biomed Circuits Syst; 2015 Apr; 9(2):248-58. PubMed ID: 25769171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Versatile Stimulation Back-End With Programmable Exponential Current Pulse Shapes for a Retinal Visual Prosthesis.
    Maghami MH; Sodagar AM; Sawan M
    IEEE Trans Neural Syst Rehabil Eng; 2016 Nov; 24(11):1243-1253. PubMed ID: 27046904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A wirelessly programmable chip for multi-channel neural stimulation.
    Mai S; Wang Z; Zhang C; Wang Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6595-9. PubMed ID: 23367441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a Closed-Loop, Bidirectional Brain Machine Interface System With Energy Efficient Neural Feature Extraction and PID Control.
    Liu X; Zhang M; Richardson AG; Lucas TH; Van der Spiegel J
    IEEE Trans Biomed Circuits Syst; 2017 Aug; 11(4):729-742. PubMed ID: 28029630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 32-Channel Wireless Configurable System for Electrical Stimulation of the Stomach
    Abukhalaf Z; Javan-Khoshkholgh A; Alrofati W; Farajidavar A
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4178-4181. PubMed ID: 30441276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Energy-Efficient Implantable-Neural-Stimulator System with Wireless Charging and Dynamic Voltage Output.
    Fu X; Mai S; Wang Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3835-3839. PubMed ID: 31946710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developing and Evaluating a Flexible Wireless Microcoil Array Based Integrated Interface for Epidural Cortical Stimulation.
    Wang X; Chaudhry SA; Hou W; Jia X
    Int J Mol Sci; 2017 Feb; 18(2):. PubMed ID: 28165427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated wireless fast-scan cyclic voltammetry recording and electrical stimulation for reward-predictive learning in awake, freely moving rats.
    Li YT; Wickens JR; Huang YL; Pan WH; Chen FY; Chen JJ
    J Neural Eng; 2013 Aug; 10(4):046007. PubMed ID: 23770892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 4-Channel Neural Stimulation IC Design With Charge Balancing and Multiple Current Output Modes.
    Li J; Chen W; Liu X; Wan P; Chen Z
    IEEE Trans Biomed Circuits Syst; 2023 Oct; 17(5):1037-1049. PubMed ID: 37738200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A handheld neural stimulation controller for avian navigation guided by remote control.
    Shim S; Yun S; Kim S; Choi GJ; Baek C; Jang J; Jung Y; Sung J; Park JH; Seo K; Seo JM; Song YK; Kim SJ
    Biomed Mater Eng; 2020; 30(5-6):497-507. PubMed ID: 31640081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a Wireless, Modular and Programmable Neuromuscular Electrical Stimulator
    Cerone GL; Vieira TMM; Botter A; Gazzoni M
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3815-3818. PubMed ID: 31946705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A wide range charge-balancing circuit using floating-gate transistors.
    Hu J; Gordon C
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5696-9. PubMed ID: 18003305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the Design of an Efficient Inductive Wireless Power Transfer for Passive Neurostimulation Systems.
    Machnoor M; Shao X; Paknahad J; Humayun M; Lazzi G
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7497-7501. PubMed ID: 34892827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A programmable stimulator for electrophysiological studies.
    Beals WM; Solie TN; Morgan RJ
    Biomed Sci Instrum; 1992; 28():1-8. PubMed ID: 1643211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Portable stimulator design aimed at differentiating facial nerves from normal tissues.
    Kara S; Kemaloğlu S; Sener F; Okandan M; Erkan MA
    J Med Syst; 2004 Apr; 28(2):177-82. PubMed ID: 15195848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A low-cost multichannel wireless neural stimulation system for freely roaming animals.
    Alam M; Chen X; Fernandez E
    J Neural Eng; 2013 Dec; 10(6):066010. PubMed ID: 24162159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.