These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 27197557)

  • 1. Legitimate intermediates of oxygen evolution on iridium oxide revealed by in situ electrochemical evanescent wave spectroscopy.
    Ooka H; Wang Y; Yamaguchi A; Hatakeyama M; Nakamura S; Hashimoto K; Nakamura R
    Phys Chem Chem Phys; 2016 Jun; 18(22):15199-204. PubMed ID: 27197557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Situ Activation Endows Orthorhombic Fluorite-Type Samarium Iridium Oxide with Enhanced Acidic Water Oxidation.
    Wang Y; Li Z; Hou L; Wang Y; Zhang L; Wang T; Liu H; Liu S; Qin Q; Liu X
    ACS Appl Mater Interfaces; 2023 Mar; ():. PubMed ID: 36892547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iridium Oxide Nanoparticles and Iridium/Iridium Oxide Nanocomposites: Photochemical Fabrication and Application in Catalytic Reduction of 4-Nitrophenol.
    Xu D; Diao P; Jin T; Wu Q; Liu X; Guo X; Gong H; Li F; Xiang M; Ronghai Y
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16738-49. PubMed ID: 26158693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Influence of the Ligand in the Iridium Mediated Electrocatalyic Water Oxidation.
    van Dijk B; Rodriguez GM; Wu L; Hofmann JP; Macchioni A; Hetterscheid DGH
    ACS Catal; 2020 Apr; 10(7):4398-4410. PubMed ID: 32280560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ observation of surface species on iridium oxide nanoparticles during the oxygen evolution reaction.
    Sanchez Casalongue HG; Ng ML; Kaya S; Friebel D; Ogasawara H; Nilsson A
    Angew Chem Int Ed Engl; 2014 Jul; 53(28):7169-72. PubMed ID: 24889896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomically Dispersed Iridium on Indium Tin Oxide Efficiently Catalyzes Water Oxidation.
    Lebedev D; Ezhov R; Heras-Domingo J; Comas-Vives A; Kaeffer N; Willinger M; Solans-Monfort X; Huang X; Pushkar Y; Copéret C
    ACS Cent Sci; 2020 Jul; 6(7):1189-1198. PubMed ID: 32724853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water oxidation intermediates on iridium oxide electrodes probed by in situ electrochemical SHINERS.
    Saeed KH; Forster M; Li JF; Hardwick LJ; Cowan AJ
    Chem Commun (Camb); 2020 Jan; 56(7):1129-1132. PubMed ID: 31894774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Simple Method for Synthesizing Highly Active Amorphous Iridium Oxide for Oxygen Evolution under Acidic Conditions.
    Salimi P; Najafpour MM
    Chemistry; 2020 Dec; 26(71):17063-17068. PubMed ID: 32852097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iridium(III) Bis-Pyridine-2-Sulfonamide Complexes as Efficient and Durable Catalysts for Homogeneous Water Oxidation.
    Li M; Takada K; Goldsmith JI; Bernhard S
    Inorg Chem; 2016 Jan; 55(2):518-26. PubMed ID: 26355840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Dissolution/Precipitation Equilibrium on the Surface of Iridium-Based Perovskites Controls Their Activity as Oxygen Evolution Reaction Catalysts in Acidic Media.
    Zhang R; Dubouis N; Ben Osman M; Yin W; Sougrati MT; Corte DAD; Giaume D; Grimaud A
    Angew Chem Int Ed Engl; 2019 Mar; 58(14):4571-4575. PubMed ID: 30672081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient water oxidation with organometallic iridium complexes as precatalysts.
    Lewandowska-Andralojc A; Polyansky DE; Wang CH; Wang WH; Himeda Y; Fujita E
    Phys Chem Chem Phys; 2014 Jun; 16(24):11976-87. PubMed ID: 24549266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction.
    Seitz LC; Dickens CF; Nishio K; Hikita Y; Montoya J; Doyle A; Kirk C; Vojvodic A; Hwang HY; Norskov JK; Jaramillo TF
    Science; 2016 Sep; 353(6303):1011-1014. PubMed ID: 27701108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly active iridium/iridium-tin/tin oxide heterogeneous nanoparticles as alternative electrocatalysts for the ethanol oxidation reaction.
    Du W; Wang Q; Saxner D; Deskins NA; Su D; Krzanowski JE; Frenkel AI; Teng X
    J Am Chem Soc; 2011 Sep; 133(38):15172-83. PubMed ID: 21812458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of an amorphous iridium water-oxidation catalyst electrodeposited from organometallic precursors.
    Blakemore JD; Mara MW; Kushner-Lenhoff MN; Schley ND; Konezny SJ; Rivalta I; Negre CF; Snoeberger RC; Kokhan O; Huang J; Stickrath A; Tran LA; Parr ML; Chen LX; Tiede DM; Batista VS; Crabtree RH; Brudvig GW
    Inorg Chem; 2013 Feb; 52(4):1860-71. PubMed ID: 23383971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembly of active IrO2 colloid catalyst on an ITO electrode for efficient electrochemical water oxidation.
    Yagi M; Tomita E; Sakita S; Kuwabara T; Nagai K
    J Phys Chem B; 2005 Nov; 109(46):21489-91. PubMed ID: 16853788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Achieving Active and Stable Amorphous Ir
    Ma CL; Yang XR; Wang ZQ; Sun W; Zhu L; Cao LM; Gong XQ; Yang J
    ACS Appl Mater Interfaces; 2022 Jun; 14(25):28706-28715. PubMed ID: 35695736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical water oxidation with carbon-grafted iridium complexes.
    deKrafft KE; Wang C; Xie Z; Su X; Hinds BJ; Lin W
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):608-13. PubMed ID: 22292527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Half-sandwich iridium complexes for homogeneous water-oxidation catalysis.
    Blakemore JD; Schley ND; Balcells D; Hull JF; Olack GW; Incarvito CD; Eisenstein O; Brudvig GW; Crabtree RH
    J Am Chem Soc; 2010 Nov; 132(45):16017-29. PubMed ID: 20964386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst.
    Zhang M; de Respinis M; Frei H
    Nat Chem; 2014 Apr; 6(4):362-7. PubMed ID: 24651205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The active site for the water oxidising anodic iridium oxide probed through in situ Raman spectroscopy.
    Pavlovic Z; Ranjan C; van Gastel M; Schlögl R
    Chem Commun (Camb); 2017 Nov; 53(92):12414-12417. PubMed ID: 29034920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.