These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 27197557)

  • 41. Non-covalent interactions in water electrolysis: influence on the activity of Pt(111) and iridium oxide catalysts in acidic media.
    Ganassin A; Colic V; Tymoczko J; Bandarenka AS; Schuhmann W
    Phys Chem Chem Phys; 2015 Apr; 17(13):8349-55. PubMed ID: 25412811
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Making oxygen with ruthenium complexes.
    Concepcion JJ; Jurss JW; Brennaman MK; Hoertz PG; Patrocinio AO; Murakami Iha NY; Templeton JL; Meyer TJ
    Acc Chem Res; 2009 Dec; 42(12):1954-65. PubMed ID: 19817345
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrochemical activation of Cp* iridium complexes for electrode-driven water-oxidation catalysis.
    Thomsen JM; Sheehan SW; Hashmi SM; Campos J; Hintermair U; Crabtree RH; Brudvig GW
    J Am Chem Soc; 2014 Oct; 136(39):13826-34. PubMed ID: 25188635
    [TBL] [Abstract][Full Text] [Related]  

  • 44.
    Li N; Cai L; Gao G; Lin Y; Wang C; Liu H; Liu Y; Duan H; Ji Q; Hu W; Tan H; Qi Z; Wang LW; Yan W
    Nano Lett; 2022 Sep; 22(17):6988-6996. PubMed ID: 36005477
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular Insight in Structure and Activity of Highly Efficient, Low-Ir Ir-Ni Oxide Catalysts for Electrochemical Water Splitting (OER).
    Reier T; Pawolek Z; Cherevko S; Bruns M; Jones T; Teschner D; Selve S; Bergmann A; Nong HN; Schlögl R; Mayrhofer KJ; Strasser P
    J Am Chem Soc; 2015 Oct; 137(40):13031-40. PubMed ID: 26355767
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electrochemical evaluation of the de-/re-activation of oxygen evolving Ir oxide.
    Papakonstantinou G; Spanos I; Dam AP; Schlögl R; Sundmacher K
    Phys Chem Chem Phys; 2022 Jun; 24(23):14579-14591. PubMed ID: 35666679
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Distinguishing homogeneous from heterogeneous catalysis in electrode-driven water oxidation with molecular iridium complexes.
    Schley ND; Blakemore JD; Subbaiyan NK; Incarvito CD; D'Souza F; Crabtree RH; Brudvig GW
    J Am Chem Soc; 2011 Jul; 133(27):10473-81. PubMed ID: 21671679
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Water Oxidation Mechanisms of Metal Oxide Catalysts by Vibrational Spectroscopy of Transient Intermediates.
    Zhang M; Frei H
    Annu Rev Phys Chem; 2017 May; 68():209-231. PubMed ID: 28226220
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Iridium Ziegler-type hydrogenation catalysts made from [(1,5-COD)Ir(mu-O2C8H15)](2) and AlEt3: spectroscopic and kinetic evidence for the Ir(n) species present and for nanoparticles as the fastest catalyst.
    Alley WM; Hamdemir IK; Wang Q; Frenkel AI; Li L; Yang JC; Menard LD; Nuzzo RG; Ozkar S; Johnson KA; Finke RG
    Inorg Chem; 2010 Sep; 49(17):8131-47. PubMed ID: 20681520
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Operando XAS Study of the Surface Oxidation State on a Monolayer IrO
    Pedersen AF; Escudero-Escribano M; Sebok B; Bodin A; Paoli E; Frydendal R; Friebel D; Stephens IEL; Rossmeisl J; Chorkendorff I; Nilsson A
    J Phys Chem B; 2018 Jan; 122(2):878-887. PubMed ID: 28980810
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Acidic iridium hydrides: implications for aerobic and Oppenauer oxidation of alcohols.
    Gabrielsson A; van Leeuwen P; Kaim W
    Chem Commun (Camb); 2006 Dec; (47):4926-7. PubMed ID: 17136249
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanisms of pH-dependent activity for water oxidation to molecular oxygen by MnO2 electrocatalysts.
    Takashima T; Hashimoto K; Nakamura R
    J Am Chem Soc; 2012 Jan; 134(3):1519-27. PubMed ID: 22206433
    [TBL] [Abstract][Full Text] [Related]  

  • 53. CoOx thin film deposited by CVD as efficient water oxidation catalyst: change of oxidation state in XPS and its correlation to electrochemical activity.
    Weidler N; Paulus S; Schuch J; Klett J; Hoch S; Stenner P; Maljusch A; Brötz J; Wittich C; Kaiser B; Jaegermann W
    Phys Chem Chem Phys; 2016 Apr; 18(16):10708-18. PubMed ID: 26694730
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Combinatorial high-throughput screening for highly active Pd-Ir-Ce based ternary catalysts in electrochemical oxygen reduction reaction.
    Park SH; Choi CH; Koh JK; Pak C; Jin SA; Woo SI
    ACS Comb Sci; 2013 Nov; 15(11):572-9. PubMed ID: 24144110
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Common Intermediates of Oxygen Evolution and Dissolution Reactions during Water Electrolysis on Iridium.
    Kasian O; Grote JP; Geiger S; Cherevko S; Mayrhofer KJJ
    Angew Chem Int Ed Engl; 2018 Feb; 57(9):2488-2491. PubMed ID: 29219237
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Oxidation-state dependent electrocatalytic activity of iridium nanoparticles supported on graphene nanosheets.
    Shim JH; Kim JE; Cho YB; Lee C; Lee Y
    Phys Chem Chem Phys; 2013 Oct; 15(37):15365-70. PubMed ID: 23928810
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Exceptionally active iridium evolved from a pseudo-cubic perovskite for oxygen evolution in acid.
    Chen Y; Li H; Wang J; Du Y; Xi S; Sun Y; Sherburne M; Ager JW; Fisher AC; Xu ZJ
    Nat Commun; 2019 Feb; 10(1):572. PubMed ID: 30718514
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Probing the oxidation chemistry of half-sandwich iridium complexes with oxygen atom transfer reagents.
    Turlington CR; Harrison DP; White PS; Brookhart M; Templeton JL
    Inorg Chem; 2013 Oct; 52(19):11351-60. PubMed ID: 24063760
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis.
    Su HY; Gorlin Y; Man IC; Calle-Vallejo F; Nørskov JK; Jaramillo TF; Rossmeisl J
    Phys Chem Chem Phys; 2012 Oct; 14(40):14010-22. PubMed ID: 22990481
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+.
    Kanan MW; Nocera DG
    Science; 2008 Aug; 321(5892):1072-5. PubMed ID: 18669820
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.