These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 27197596)

  • 1. Correction of the Electrical and Thermal Extrinsic Effects in Thermoelectric Measurements by the Harman Method.
    Kang MS; Roh IJ; Lee YG; Baek SH; Kim SK; Ju BK; Hyun DB; Kim JS; Kwon B
    Sci Rep; 2016 May; 6():26507. PubMed ID: 27197596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of parasitic thermal effects on thermoelectric property measurements by Harman method.
    Kwon B; Baek SH; Kim SK; Kim JS
    Rev Sci Instrum; 2014 Apr; 85(4):045108. PubMed ID: 24784660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermoelectric characterization by transient Harman method under nonideal contact and boundary conditions.
    Castillo EE; Hapenciuc CL; Borca-Tasciuc T
    Rev Sci Instrum; 2010 Apr; 81(4):044902. PubMed ID: 20441361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Harman Measurements for Thermoelectric Materials and Modules under Non-Adiabatic Conditions.
    Roh IJ; Lee YG; Kang MS; Lee JU; Baek SH; Kim SK; Ju BK; Hyun DB; Kim JS; Kwon B
    Sci Rep; 2016 Dec; 6():39131. PubMed ID: 27966622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boundary Engineering for the Thermoelectric Performance of Bulk Alloys Based on Bismuth Telluride.
    Mun H; Choi SM; Lee KH; Kim SW
    ChemSusChem; 2015 Jul; 8(14):2312-26. PubMed ID: 25782971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous measurement of all thermoelectric properties of bulk materials in the temperature range 300-600 K.
    Kolb H; Dasgupta T; Zabrocki K; Mueller E; de Boor J
    Rev Sci Instrum; 2015 Jul; 86(7):073901. PubMed ID: 26233393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-accuracy direct ZT and intrinsic properties measurement of thermoelectric couple devices.
    Kraemer D; Chen G
    Rev Sci Instrum; 2014 Apr; 85(4):045107. PubMed ID: 24784659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An accurate new method to measure the dimensionless figure of merit of thermoelectric devices based on the complex impedance porcupine diagram.
    De Marchi A; Giaretto V
    Rev Sci Instrum; 2011 Oct; 82(10):104904. PubMed ID: 22047320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boron-Mediated Grain Boundary Engineering Enables Simultaneous Improvement of Thermoelectric and Mechanical Properties in N-Type Bi
    Zhang C; Geng X; Chen B; Li J; Meledin A; Hu L; Liu F; Shi J; Mayer J; Wuttig M; Cojocaru-Mirédin O; Yu Y
    Small; 2021 Oct; 17(42):e2104067. PubMed ID: 34541782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Four-probe measurements of the in-plane thermoelectric properties of nanofilms.
    Mavrokefalos A; Pettes MT; Zhou F; Shi L
    Rev Sci Instrum; 2007 Mar; 78(3):034901. PubMed ID: 17411207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical Bi
    Liu Y; Wang Q; Pan J; Sun Y; Zhang L; Song S
    Chemistry; 2018 Jul; 24(39):9765-9768. PubMed ID: 29779256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Porous Thermoelectric Nanocomposites with Low Thermal Conductivity and High Figure of Merit from Large-Scale Solution-Synthesized Bi
    Xu B; Feng T; Agne MT; Zhou L; Ruan X; Snyder GJ; Wu Y
    Angew Chem Int Ed Engl; 2017 Mar; 56(13):3546-3551. PubMed ID: 28079961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning Optimum Temperature Range of Bi
    Zhang Q; Fang T; Liu F; Li A; Wu Y; Zhu T; Zhao X
    Chem Asian J; 2020 Sep; 15(18):2775-2792. PubMed ID: 32696486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Invited article: A round robin test of the uncertainty on the measurement of the thermoelectric dimensionless figure of merit of Co0.97Ni0.03Sb3.
    Alleno E; Bérardan D; Byl C; Candolfi C; Daou R; Decourt R; Guilmeau E; Hébert S; Hejtmanek J; Lenoir B; Masschelein P; Ohorodnichuk V; Pollet M; Populoh S; Ravot D; Rouleau O; Soulier M
    Rev Sci Instrum; 2015 Jan; 86(1):011301. PubMed ID: 25638064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new strategy for realizing the conversion of "homo-hetero-homo" heteroepitaxial growth in Bi(2)Te(3) and the thermoelectric performance.
    Guo W; Ma J; Yang J; Li D; Qin Q; Wei C; Zheng W
    Chemistry; 2014 May; 20(19):5657-64. PubMed ID: 24700422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical conductivity measurements on disk-shaped samples.
    de Boor J; Zabrocki K; Frohring J; Müller E
    Rev Sci Instrum; 2014 Jul; 85(7):075104. PubMed ID: 25085170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling thermoelectric transport in organic materials.
    Wang D; Shi W; Chen J; Xi J; Shuai Z
    Phys Chem Chem Phys; 2012 Dec; 14(48):16505-20. PubMed ID: 23086525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermoelectric properties and efficiency measurements under large temperature differences.
    Muto A; Kraemer D; Hao Q; Ren ZF; Chen G
    Rev Sci Instrum; 2009 Sep; 80(9):093901. PubMed ID: 19791947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermoelectric Properties of Ag-Doped Bi2(Se,Te)3 Compounds: Dual Electronic Nature of Ag-Related Lattice Defects.
    Lu MP; Liao CN; Huang JY; Hsu HC
    Inorg Chem; 2015 Aug; 54(15):7438-44. PubMed ID: 26200130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A setup for measuring the Seebeck coefficient and the electrical resistivity of bulk thermoelectric materials.
    Fu Q; Xiong Y; Zhang W; Xu D
    Rev Sci Instrum; 2017 Sep; 88(9):095111. PubMed ID: 28964241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.