BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 27197685)

  • 1. Urban climate versus global climate change-what makes the difference for dengue?
    Misslin R; Telle O; Daudé E; Vaguet A; Paul RE
    Ann N Y Acad Sci; 2016 Oct; 1382(1):56-72. PubMed ID: 27197685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vectorial capacity of Aedes aegypti: effects of temperature and implications for global dengue epidemic potential.
    Liu-Helmersson J; Stenlund H; Wilder-Smith A; Rocklöv J
    PLoS One; 2014; 9(3):e89783. PubMed ID: 24603439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. São Paulo urban heat islands have a higher incidence of dengue than other urban areas.
    Araujo RV; Albertini MR; Costa-da-Silva AL; Suesdek L; Franceschi NC; Bastos NM; Katz G; Cardoso VA; Castro BC; Capurro ML; Allegro VL
    Braz J Infect Dis; 2015; 19(2):146-55. PubMed ID: 25523076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The interrelationship between dengue incidence and diurnal ranges of temperature and humidity in a Sri Lankan city and its potential applications.
    Ehelepola ND; Ariyaratne K
    Glob Health Action; 2015; 8():29359. PubMed ID: 26632645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Meteorological variables and mosquito monitoring are good predictors for infestation trends of Aedes aegypti, the vector of dengue, chikungunya and Zika.
    da Cruz Ferreira DA; Degener CM; de Almeida Marques-Toledo C; Bendati MM; Fetzer LO; Teixeira CP; Eiras ÁE
    Parasit Vectors; 2017 Feb; 10(1):78. PubMed ID: 28193291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate Change and Aedes Vectors: 21st Century Projections for Dengue Transmission in Europe.
    Liu-Helmersson J; Quam M; Wilder-Smith A; Stenlund H; Ebi K; Massad E; Rocklöv J
    EBioMedicine; 2016 May; 7():267-77. PubMed ID: 27322480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dengue fever epidemic potential as projected by general circulation models of global climate change.
    Patz JA; Martens WJ; Focks DA; Jetten TH
    Environ Health Perspect; 1998 Mar; 106(3):147-53. PubMed ID: 9452414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating air temperature using MODIS surface temperature images for assessing Aedes aegypti thermal niche in Bangkok, Thailand.
    Misslin R; Vaguet Y; Vaguet A; Daudé É
    Environ Monit Assess; 2018 Aug; 190(9):537. PubMed ID: 30132225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dengue and climate change in Australia: predictions for the future should incorporate knowledge from the past.
    Russell RC; Currie BJ; Lindsay MD; Mackenzie JS; Ritchie SA; Whelan PI
    Med J Aust; 2009 Mar; 190(5):265-8. PubMed ID: 19296793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Climate change and the potential global distribution of Aedes aegypti: spatial modelling using GIS and CLIMEX.
    Khormi HM; Kumar L
    Geospat Health; 2014 May; 8(2):405-15. PubMed ID: 24893017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Perspective on Inhabited Urban Space: Land Use and Occupation, Heat Islands, and Precarious Urbanization as Determinants of Territorial Receptivity to Dengue in the City of Rio De Janeiro.
    Santos JPC; Honório NA; Barcellos C; Nobre AA
    Int J Environ Res Public Health; 2020 Sep; 17(18):. PubMed ID: 32911768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The current and future global distribution and population at risk of dengue.
    Messina JP; Brady OJ; Golding N; Kraemer MUG; Wint GRW; Ray SE; Pigott DM; Shearer FM; Johnson K; Earl L; Marczak LB; Shirude S; Davis Weaver N; Gilbert M; Velayudhan R; Jones P; Jaenisch T; Scott TW; Reiner RC; Hay SI
    Nat Microbiol; 2019 Sep; 4(9):1508-1515. PubMed ID: 31182801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dengue and chikungunya: long-distance spread and outbreaks in naïve areas.
    Rezza G
    Pathog Glob Health; 2014 Dec; 108(8):349-55. PubMed ID: 25491436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of urbanization and land-use/land-cover change on diurnal temperature range: a case study of tropical urban airshed of India using remote sensing data.
    Mohan M; Kandya A
    Sci Total Environ; 2015 Feb; 506-507():453-65. PubMed ID: 25437763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seasonal temperature variation influences climate suitability for dengue, chikungunya, and Zika transmission.
    Huber JH; Childs ML; Caldwell JM; Mordecai EA
    PLoS Negl Trop Dis; 2018 May; 12(5):e0006451. PubMed ID: 29746468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Impact of changes in the environment on vector-transmitted diseases].
    Mouchet J; Carnevale P
    Sante; 1997; 7(4):263-9. PubMed ID: 9410453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global spread and persistence of dengue.
    Kyle JL; Harris E
    Annu Rev Microbiol; 2008; 62():71-92. PubMed ID: 18429680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Projecting the impact of climate change on dengue transmission in Dhaka, Bangladesh.
    Banu S; Hu W; Guo Y; Hurst C; Tong S
    Environ Int; 2014 Feb; 63():137-42. PubMed ID: 24291765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Socioeconomic and environmental determinants of dengue transmission in an urban setting: An ecological study in Nouméa, New Caledonia.
    Zellweger RM; Cano J; Mangeas M; Taglioni F; Mercier A; Despinoy M; Menkès CE; Dupont-Rouzeyrol M; Nikolay B; Teurlai M
    PLoS Negl Trop Dis; 2017 Apr; 11(4):e0005471. PubMed ID: 28369149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental factors can influence dengue reported cases.
    Carneiro MAF; Alves BDCA; Gehrke FS; Domingues JN; Sá N; Paixão S; Figueiredo J; Ferreira A; Almeida C; Machi A; Savóia E; Nascimento V; Fonseca F
    Rev Assoc Med Bras (1992); 2017 Nov; 63(11):957-961. PubMed ID: 29451659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.