These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 27197728)
21. Application of laser microdissection to study phytoplasma site-specific gene expression in the model plant Arabidopsis thaliana. Rossi M; Pesando M; Vallino M; Galetto L; Marzachì C; Balestrini R Microbiol Res; 2018 Dec; 217():60-68. PubMed ID: 30384909 [TBL] [Abstract][Full Text] [Related]
22. Sieve Elements: The Favourite Habitat of Phytoplasmas. van Bel AJE Methods Mol Biol; 2019; 1875():255-277. PubMed ID: 30362009 [TBL] [Abstract][Full Text] [Related]
23. Unplugging the callose plug from sieve pores. Xie B; Hong Z Plant Signal Behav; 2011 Apr; 6(4):491-3. PubMed ID: 21386663 [TBL] [Abstract][Full Text] [Related]
24. OHMS**: Phytoplasmas dictate changes in sieve-element ultrastructure to accommodate their requirements for nutrition, multiplication and translocation. Musetti R; Pagliari L; Buxa SV; Degola F; De Marco F; Loschi A; Kogel KH; van Bel AJ Plant Signal Behav; 2016; 11(2):e1138191. PubMed ID: 26795235 [TBL] [Abstract][Full Text] [Related]
25. Phytoplasma Infection Blocks Starch Breakdown and Triggers Chloroplast Degradation, Leading to Premature Leaf Senescence, Sucrose Reallocation, and Spatiotemporal Redistribution of Phytohormones. Wei W; Inaba J; Zhao Y; Mowery JD; Hammond R Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163732 [TBL] [Abstract][Full Text] [Related]
26. Tomato flower abnormalities induced by stolbur phytoplasma infection are associated with changes of expression of floral development genes. Pracros P; Renaudin J; Eveillard S; Mouras A; Hernould M Mol Plant Microbe Interact; 2006 Jan; 19(1):62-8. PubMed ID: 16404954 [TBL] [Abstract][Full Text] [Related]
27. Sieve element biology provides leads for research on phytoplasma lifestyle in plant hosts. van Bel AJE; Musetti R J Exp Bot; 2019 Aug; 70(15):3737-3755. PubMed ID: 30972422 [TBL] [Abstract][Full Text] [Related]
28. Ultrastructure of phytoplasma-infected jujube leaves with witches' broom disease. Park J; Kim HJ; Huh YH; Kim KW Micron; 2021 Sep; 148():103108. PubMed ID: 34237476 [TBL] [Abstract][Full Text] [Related]
29. Phloem Metabolites of Prunus Sp. Rather than Infection with Candidatus Phytoplasma Prunorum Influence Feeding Behavior of Cacopsylla pruni Nymphs. Gallinger J; Gross J J Chem Ecol; 2020 Aug; 46(8):756-770. PubMed ID: 31965396 [TBL] [Abstract][Full Text] [Related]
30. Increased susceptibility to Chrysanthemum Yellows phytoplasma infection in Atcals7ko plants is accompanied by enhanced expression of carbohydrate transporters. Bernardini C; Santi S; Mian G; Levy A; Buoso S; Suh JH; Wang Y; Vincent C; van Bel AJE; Musetti R Planta; 2022 Jul; 256(2):43. PubMed ID: 35842878 [TBL] [Abstract][Full Text] [Related]
31. Tie-dyed2 encodes a callose synthase that functions in vein development and affects symplastic trafficking within the phloem of maize leaves. Slewinski TL; Baker RF; Stubert A; Braun DM Plant Physiol; 2012 Nov; 160(3):1540-50. PubMed ID: 22932757 [TBL] [Abstract][Full Text] [Related]
32. Peanut witches' broom (PnWB) phytoplasma-mediated leafy flower symptoms and abnormal vascular bundles development. Liu CT; Huang HM; Hong SF; Kuo-Huang LL; Yang CY; Lin YY; Lin CP; Lin SS Plant Signal Behav; 2015; 10(12):e1107690. PubMed ID: 26492318 [TBL] [Abstract][Full Text] [Related]
33. Sieve element occlusion: Interactions with phloem sap-feeding insects. A review. Walker GP J Plant Physiol; 2022 Feb; 269():153582. PubMed ID: 34953413 [TBL] [Abstract][Full Text] [Related]
34. Sieve tube geometry in relation to phloem flow. Mullendore DL; Windt CW; Van As H; Knoblauch M Plant Cell; 2010 Mar; 22(3):579-93. PubMed ID: 20354199 [TBL] [Abstract][Full Text] [Related]
35. Metabolomic analysis reveals the potential metabolites and pathogenesis involved in mulberry yellow dwarf disease. Gai YP; Han XJ; Li YQ; Yuan CZ; Mo YY; Guo FY; Liu QX; Ji XL Plant Cell Environ; 2014 Jun; 37(6):1474-90. PubMed ID: 24329897 [TBL] [Abstract][Full Text] [Related]
36. 'Candidatus Phytoplasma solani', a novel taxon associated with stolbur- and bois noir-related diseases of plants. Quaglino F; Zhao Y; Casati P; Bulgari D; Bianco PA; Wei W; Davis RE Int J Syst Evol Microbiol; 2013 Aug; 63(Pt 8):2879-2894. PubMed ID: 23334879 [TBL] [Abstract][Full Text] [Related]
37. The tie-dyed pathway promotes symplastic trafficking in the phloem. Baker RF; Slewinski TL; Braun DM Plant Signal Behav; 2013 Jun; 8(6):e24540. PubMed ID: 23603956 [TBL] [Abstract][Full Text] [Related]
38. LeFRK2 is required for phloem and xylem differentiation and the transport of both sugar and water. Damari-Weissler H; Rachamilevitch S; Aloni R; German MA; Cohen S; Zwieniecki MA; Michele Holbrook N; Granot D Planta; 2009 Sep; 230(4):795-805. PubMed ID: 19633866 [TBL] [Abstract][Full Text] [Related]
39. Seasonal patterns of callose deposition and xylem embolism in five boreal deciduous tree species. Miller AE; Stanfield RC; Hacke UG Am J Bot; 2021 Aug; 108(8):1568-1575. PubMed ID: 34449081 [TBL] [Abstract][Full Text] [Related]
40. Callose biosynthesis in Arabidopsis with a focus on pathogen response: what we have learned within the last decade. Ellinger D; Voigt CA Ann Bot; 2014 Oct; 114(6):1349-58. PubMed ID: 24984713 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]