BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 27197762)

  • 1. Mass spectrometry of B. subtilis CopZ: Cu(i)-binding and interactions with bacillithiol.
    Kay KL; Hamilton CJ; Le Brun NE
    Metallomics; 2016 Jul; 8(7):709-19. PubMed ID: 27197762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mass spectrometric studies of Cu(I)-binding to the N-terminal domains of B. subtilis CopA and influence of bacillithiol.
    Kay KL; Hamilton CJ; Le Brun NE
    J Inorg Biochem; 2019 Jan; 190():24-30. PubMed ID: 30342352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic insights into Cu(I) cluster transfer between the chaperone CopZ and its cognate Cu(I)-transporting P-type ATPase, CopA.
    Singleton C; Hearnshaw S; Zhou L; Le Brun NE; Hemmings AM
    Biochem J; 2009 Dec; 424(3):347-56. PubMed ID: 19751213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning of copper-loop flexibility in Bacillus subtilis CopZ copper chaperone: role of conserved residues.
    Rodriguez-Granillo A; Wittung-Stafshede P
    J Phys Chem B; 2009 Feb; 113(7):1919-32. PubMed ID: 19170606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic analysis of copper transfer from a chaperone to its target protein mediated by complex formation.
    Kay KL; Zhou L; Tenori L; Bradley JM; Singleton C; Kihlken MA; Ciofi-Baffoni S; Le Brun NE
    Chem Commun (Camb); 2017 Jan; 53(8):1397-1400. PubMed ID: 28078344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High Cu(I) and low proton affinities of the CXXC motif of Bacillus subtilis CopZ.
    Zhou L; Singleton C; Le Brun NE
    Biochem J; 2008 Aug; 413(3):459-65. PubMed ID: 18419582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper-mediated dimerization of CopZ, a predicted copper chaperone from Bacillus subtilis.
    Kihlken MA; Leech AP; Le Brun NE
    Biochem J; 2002 Dec; 368(Pt 3):729-39. PubMed ID: 12238948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protective role of bacillithiol in superoxide stress and Fe-S metabolism in Bacillus subtilis.
    Fang Z; Dos Santos PC
    Microbiologyopen; 2015 Aug; 4(4):616-31. PubMed ID: 25988368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metalloregulation in Bacillus subtilis: the copZ chromosomal gene is involved in cadmium resistance.
    Solovieva IM; Entian KD
    FEMS Microbiol Lett; 2004 Jul; 236(1):115-22. PubMed ID: 15212800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct characteristics of Ag+ and Cd2+ binding to CopZ from Bacillus subtilis.
    Kihlken MA; Singleton C; Le Brun NE
    J Biol Inorg Chem; 2008 Aug; 13(6):1011-23. PubMed ID: 18496720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Role of Bacillithiol in Gram-Positive Firmicutes.
    Chandrangsu P; Loi VV; Antelmann H; Helmann JD
    Antioxid Redox Signal; 2018 Feb; 28(6):445-462. PubMed ID: 28301954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solution structure of apo CopZ from Bacillus subtilis: further analysis of the changes associated with the presence of copper.
    Banci L; Bertini I; Del Conte R
    Biochemistry; 2003 Nov; 42(46):13422-8. PubMed ID: 14621987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper transfer from the Cu(I) chaperone, CopZ, to the repressor, Zn(II)CopY: metal coordination environments and protein interactions.
    Cobine PA; George GN; Jones CE; Wickramasinghe WA; Solioz M; Dameron CT
    Biochemistry; 2002 May; 41(18):5822-9. PubMed ID: 11980486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of cofactor on stability of bacterial (CopZ) and human (Atox1) copper chaperones.
    Hussain F; Wittung-Stafshede P
    Biochim Biophys Acta; 2007 Oct; 1774(10):1316-22. PubMed ID: 17881304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper trafficking: the solution structure of Bacillus subtilis CopZ.
    Banci L; Bertini I; Del Conte R; Markey J; Ruiz-Dueñas FJ
    Biochemistry; 2001 Dec; 40(51):15660-8. PubMed ID: 11747441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the metal-binding selectivity of the metallochaperone CopZ from Enterococcus hirae by electrospray ionization mass spectrometry.
    Urvoas A; Amekraz B; Moulin C; Le Clainche L; Stöcklin R; Moutiez M
    Rapid Commun Mass Spectrom; 2003; 17(16):1889-96. PubMed ID: 12876690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox regulation in Bacillus subtilis: The bacilliredoxins BrxA(YphP) and BrxB(YqiW) function in de-bacillithiolation of S-bacillithiolated OhrR and MetE.
    Gaballa A; Chi BK; Roberts AA; Becher D; Hamilton CJ; Antelmann H; Helmann JD
    Antioxid Redox Signal; 2014 Jul; 21(3):357-67. PubMed ID: 24313874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and dynamics of Cu(I) binding in copper chaperones Atox1 and CopZ: a computer simulation study.
    Rodriguez-Granillo A; Wittung-Stafshede P
    J Phys Chem B; 2008 Apr; 112(15):4583-93. PubMed ID: 18361527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution structure of the N-terminal domain of a potential copper-translocating P-type ATPase from Bacillus subtilis in the apo and Cu(I) loaded states.
    Banci L; Bertini I; Ciofi-Baffoni S; D'Onofrio M; Gonnelli L; Marhuenda-Egea FC; Ruiz-Dueñas FJ
    J Mol Biol; 2002 Mar; 317(3):415-29. PubMed ID: 11922674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Cu chaperone CopZ is required for Cu homeostasis in Rhodobacter capsulatus and influences cytochrome cbb
    Utz M; Andrei A; Milanov M; Trasnea PI; Marckmann D; Daldal F; Koch HG
    Mol Microbiol; 2019 Mar; 111(3):764-783. PubMed ID: 30582886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.