These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 27198189)

  • 1. Simple biophysics underpins collective conformations of the intrinsically disordered proteins of the Nuclear Pore Complex.
    Vovk A; Gu C; Opferman MG; Kapinos LE; Lim RY; Coalson RD; Jasnow D; Zilman A
    Elife; 2016 May; 5():. PubMed ID: 27198189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aggregation, Phase Separation and Spatial Morphologies of the Assemblies of FG Nucleoporins.
    Zilman A
    J Mol Biol; 2018 Nov; 430(23):4730-4740. PubMed ID: 30017917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Programmable DNA Origami Platform for Organizing Intrinsically Disordered Nucleoporins within Nanopore Confinement.
    Fisher PDE; Shen Q; Akpinar B; Davis LK; Chung KKH; Baddeley D; Šarić A; Melia TJ; Hoogenboom BW; Lin C; Lusk CP
    ACS Nano; 2018 Feb; 12(2):1508-1518. PubMed ID: 29350911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Role of Cohesiveness in the Permeability of the Spatial Assemblies of FG Nucleoporins.
    Gu C; Vovk A; Zheng T; Coalson RD; Zilman A
    Biophys J; 2019 Apr; 116(7):1204-1215. PubMed ID: 30902367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsically disordered nuclear pore proteins show ideal-polymer morphologies and dynamics.
    Davis LK; Ford IJ; Šarić A; Hoogenboom BW
    Phys Rev E; 2020 Feb; 101(2-1):022420. PubMed ID: 32168597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deciphering the intrinsically disordered characteristics of the FG-Nups through the lens of polymer physics.
    Matsuda A; Mansour A; Mofrad MRK
    Nucleus; 2024 Dec; 15(1):2399247. PubMed ID: 39282864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How to operate a nuclear pore complex by Kap-centric control.
    Lim RY; Huang B; Kapinos LE
    Nucleus; 2015; 6(5):366-72. PubMed ID: 26338152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deciphering the "Fuzzy" Interaction of FG Nucleoporins and Transport Factors Using Small-Angle Neutron Scattering.
    Sparks S; Temel DB; Rout MP; Cowburn D
    Structure; 2018 Mar; 26(3):477-484.e4. PubMed ID: 29429880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The selective permeability barrier in the nuclear pore complex.
    Li C; Goryaynov A; Yang W
    Nucleus; 2016 Sep; 7(5):430-446. PubMed ID: 27673359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prevalence and functionality of intrinsic disorder in human FG-nucleoporins.
    Lyngdoh DL; Nag N; Uversky VN; Tripathi T
    Int J Biol Macromol; 2021 Apr; 175():156-170. PubMed ID: 33548309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial structure of disordered proteins dictates conductance and selectivity in nuclear pore complex mimics.
    Ananth AN; Mishra A; Frey S; Dwarkasing A; Versloot R; van der Giessen E; Görlich D; Onck P; Dekker C
    Elife; 2018 Feb; 7():. PubMed ID: 29442997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Allosteric modulation of nucleoporin assemblies by intrinsically disordered regions.
    Blus BJ; Koh J; Krolak A; Seo HS; Coutavas E; Blobel G
    Sci Adv; 2019 Nov; 5(11):eaax1836. PubMed ID: 31807700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nup98 FG domains from diverse species spontaneously phase-separate into particles with nuclear pore-like permselectivity.
    Schmidt HB; Görlich D
    Elife; 2015 Jan; 4():. PubMed ID: 25562883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Converging on the function of intrinsically disordered nucleoporins in the nuclear pore complex.
    Peleg O; Lim RY
    Biol Chem; 2010 Jul; 391(7):719-30. PubMed ID: 20482319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Sequence Composition, Patterning and Hydrodynamics on the Conformation and Dynamics of Intrinsically Disordered Proteins.
    Vovk A; Zilman A
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping multivalency and differential affinities within large intrinsically disordered protein complexes with segmental motion analysis.
    Milles S; Lemke EA
    Angew Chem Int Ed Engl; 2014 Jul; 53(28):7364-7. PubMed ID: 24898547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing Differential Binding Mechanisms of Phenylalanine-Glycine-Rich Nucleoporins by Single-Molecule FRET.
    Tan PS; Lemke EA
    Methods Enzymol; 2018; 611():327-346. PubMed ID: 30471692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multivalent Interactions with Intrinsically Disordered Proteins Probed by Surface Plasmon Resonance.
    Kapinos LE; Lim RYH
    Methods Mol Biol; 2022; 2502():311-328. PubMed ID: 35412248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualizing the disordered nuclear transport machinery in situ.
    Yu M; Heidari M; Mikhaleva S; Tan PS; Mingu S; Ruan H; Reinkemeier CD; Obarska-Kosinska A; Siggel M; Beck M; Hummer G; Lemke EA
    Nature; 2023 May; 617(7959):162-169. PubMed ID: 37100914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMR based solvent exchange experiments to understand the conformational preference of intrinsically disordered proteins using FG-nucleoporin peptide as a model.
    Heisel KA; Krishnan VV
    Biopolymers; 2014 Jan; 102(1):69-77. PubMed ID: 24037535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.