These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 27198218)

  • 1. Distinct patterns of Cas9 mismatch tolerance in vitro and in vivo.
    Fu BX; St Onge RP; Fire AZ; Smith JD
    Nucleic Acids Res; 2016 Jun; 44(11):5365-77. PubMed ID: 27198218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Target-dependent nickase activities of the CRISPR-Cas nucleases Cpf1 and Cas9.
    Fu BXH; Smith JD; Fuchs RT; Mabuchi M; Curcuru J; Robb GB; Fire AZ
    Nat Microbiol; 2019 May; 4(5):888-897. PubMed ID: 30833733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPRseek: a bioconductor package to identify target-specific guide RNAs for CRISPR-Cas9 genome-editing systems.
    Zhu LJ; Holmes BR; Aronin N; Brodsky MH
    PLoS One; 2014; 9(9):e108424. PubMed ID: 25247697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Cas9-Guide RNA Orthologs.
    Braff JL; Yaung SJ; Esvelt KM; Church GM
    Cold Spring Harb Protoc; 2016 May; 2016(5):. PubMed ID: 27140923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Internal guide RNA interactions interfere with Cas9-mediated cleavage.
    Thyme SB; Akhmetova L; Montague TG; Valen E; Schier AF
    Nat Commun; 2016 Jun; 7():11750. PubMed ID: 27282953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted genome editing in human cells using CRISPR/Cas nucleases and truncated guide RNAs.
    Fu Y; Reyon D; Joung JK
    Methods Enzymol; 2014; 546():21-45. PubMed ID: 25398334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-Cas9 off-targeting assessment with nucleic acid duplex energy parameters.
    Alkan F; Wenzel A; Anthon C; Havgaard JH; Gorodkin J
    Genome Biol; 2018 Oct; 19(1):177. PubMed ID: 30367669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Planta Processing of the SpCas9-gRNA Complex.
    Mikami M; Toki S; Endo M
    Plant Cell Physiol; 2017 Nov; 58(11):1857-1867. PubMed ID: 29040704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural roles of guide RNAs in the nuclease activity of Cas9 endonuclease.
    Lim Y; Bak SY; Sung K; Jeong E; Lee SH; Kim JS; Bae S; Kim SK
    Nat Commun; 2016 Nov; 7():13350. PubMed ID: 27804953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs.
    Fu Y; Sander JD; Reyon D; Cascio VM; Joung JK
    Nat Biotechnol; 2014 Mar; 32(3):279-284. PubMed ID: 24463574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EasyGuide Plasmids Support in Vivo Assembly of gRNAs for CRISPR/Cas9 Applications in
    Jacobus AP; Barreto JA; de Bem LS; Menegon YA; Fier Í; Bueno JGR; Dos Santos LV; Gross J
    ACS Synth Biol; 2022 Nov; 11(11):3886-3891. PubMed ID: 36257021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the structural dynamics of the CRISPR-Cas9 RNA-guided DNA-cleavage system by coarse-grained modeling.
    Zheng W
    Proteins; 2017 Feb; 85(2):342-353. PubMed ID: 27936513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction and Validation of Native and Engineered Cas9 Guide Sequences.
    Briner AE; Henriksen ED; Barrangou R
    Cold Spring Harb Protoc; 2016 Jul; 2016(7):. PubMed ID: 27371591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative CRISPR interference screens in yeast identify chemical-genetic interactions and new rules for guide RNA design.
    Smith JD; Suresh S; Schlecht U; Wu M; Wagih O; Peltz G; Davis RW; Steinmetz LM; Parts L; St Onge RP
    Genome Biol; 2016 Mar; 17():45. PubMed ID: 26956608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time observation of DNA target interrogation and product release by the RNA-guided endonuclease CRISPR Cpf1 (Cas12a).
    Singh D; Mallon J; Poddar A; Wang Y; Tippana R; Yang O; Bailey S; Ha T
    Proc Natl Acad Sci U S A; 2018 May; 115(21):5444-5449. PubMed ID: 29735714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of genome editing through CRISPR-Cas9 engineering.
    Zhang JH; Adikaram P; Pandey M; Genis A; Simonds WF
    Bioengineered; 2016 Apr; 7(3):166-74. PubMed ID: 27340770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput biochemical profiling reveals sequence determinants of dCas9 off-target binding and unbinding.
    Boyle EA; Andreasson JOL; Chircus LM; Sternberg SH; Wu MJ; Guegler CK; Doudna JA; Greenleaf WJ
    Proc Natl Acad Sci U S A; 2017 May; 114(21):5461-5466. PubMed ID: 28495970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro enzymology of Cas9.
    Anders C; Jinek M
    Methods Enzymol; 2014; 546():1-20. PubMed ID: 25398333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic decomposition of sequence determinants governing CRISPR/Cas9 specificity.
    Fu R; He W; Dou J; Villarreal OD; Bedford E; Wang H; Hou C; Zhang L; Wang Y; Ma D; Chen Y; Gao X; Depken M; Xu H
    Nat Commun; 2022 Jan; 13(1):474. PubMed ID: 35078987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Breaking-Cas-interactive design of guide RNAs for CRISPR-Cas experiments for ENSEMBL genomes.
    Oliveros JC; Franch M; Tabas-Madrid D; San-León D; Montoliu L; Cubas P; Pazos F
    Nucleic Acids Res; 2016 Jul; 44(W1):W267-71. PubMed ID: 27166368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.