These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 27198564)

  • 1. Production of Glucaric Acid from Hemicellulose Substrate by Rosettasome Enzyme Assemblies.
    Lee CC; Kibblewhite RE; Paavola CD; Orts WJ; Wagschal K
    Mol Biotechnol; 2016 Jul; 58(7):489-96. PubMed ID: 27198564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The rosettazyme: a synthetic cellulosome.
    Mitsuzawa S; Kagawa H; Li Y; Chan SL; Paavola CD; Trent JD
    J Biotechnol; 2009 Aug; 143(2):139-44. PubMed ID: 19559062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Driving biomass breakdown through engineered cellulosomes.
    Gilmore SP; Henske JK; O'Malley MA
    Bioengineered; 2015; 6(4):204-8. PubMed ID: 26068180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into cellulosome assembly and dynamics: from dissection to reconstruction of the supramolecular enzyme complex.
    Smith SP; Bayer EA
    Curr Opin Struct Biol; 2013 Oct; 23(5):686-94. PubMed ID: 24080387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designer cellulosomes for enhanced hydrolysis of cellulosic substrates.
    Vazana Y; Moraïs S; Barak Y; Lamed R; Bayer EA
    Methods Enzymol; 2012; 510():429-52. PubMed ID: 22608740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate-Related Factors Affecting Cellulosome-Induced Hydrolysis for Lignocellulose Valorization.
    Wang Y; Leng L; Islam MK; Liu F; Lin CSK; Leu SY
    Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31288425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of
    Lee CC; Kibblewhite RE; Paavola CD; Orts WJ; Wagschal K
    J Microbiol Biotechnol; 2017 Jan; 27(1):77-83. PubMed ID: 27666987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic hydrolysis of biomimetic bacterial cellulose-hemicellulose composites.
    Penttilä PA; Imai T; Hemming J; Willför S; Sugiyama J
    Carbohydr Polym; 2018 Jun; 190():95-102. PubMed ID: 29628264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of cellulosome composition in Clostridium cellulolyticum: adaptation to the polysaccharide environment revealed by proteomic and carbohydrate-active enzyme analyses.
    Blouzard JC; Coutinho PM; Fierobe HP; Henrissat B; Lignon S; Tardif C; Pagès S; de Philip P
    Proteomics; 2010 Feb; 10(3):541-54. PubMed ID: 20013800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli.
    Moon TS; Dueber JE; Shiue E; Prather KL
    Metab Eng; 2010 May; 12(3):298-305. PubMed ID: 20117231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Progress in glucaric acid].
    Qiu Y; Fang F; Du G; Chen J
    Sheng Wu Gong Cheng Xue Bao; 2015 Apr; 31(4):481-90. PubMed ID: 26380405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a uronate dehydrogenase from Thermobispora bispora for production of glucaric acid from hemicellulose substrate.
    Li Y; Xue Y; Cao Z; Zhou T; Alnadari F
    World J Microbiol Biotechnol; 2018 Jun; 34(7):102. PubMed ID: 29936649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial scaffolds for enhanced biocatalysis.
    Sun Q; Tsai SL; Chen W
    Methods Enzymol; 2019; 617():363-383. PubMed ID: 30784409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Escherichia coli expression, purification, crystallization, and structure determination of bacterial cohesin-dockerin complexes.
    Brás JL; Carvalho AL; Viegas A; Najmudin S; Alves VD; Prates JA; Ferreira LM; Romão MJ; Gilbert HJ; Fontes CM
    Methods Enzymol; 2012; 510():395-415. PubMed ID: 22608738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellulosome complexes: natural biocatalysts as arming microcompartments of enzymes.
    Bae J; Morisaka H; Kuroda K; Ueda M
    J Mol Microbiol Biotechnol; 2013; 23(4-5):370-8. PubMed ID: 23920499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides.
    Artzi L; Bayer EA; Moraïs S
    Nat Rev Microbiol; 2017 Feb; 15(2):83-95. PubMed ID: 27941816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continually emerging mechanistic complexity of the multi-enzyme cellulosome complex.
    Smith SP; Bayer EA; Czjzek M
    Curr Opin Struct Biol; 2017 Jun; 44():151-160. PubMed ID: 28390861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HaloTag mediated artificial cellulosome assembly on a rolling circle amplification DNA template for efficient cellulose hydrolysis.
    Sun Q; Chen W
    Chem Commun (Camb); 2016 May; 52(40):6701-4. PubMed ID: 27117678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A combined cell-consortium approach for lignocellulose degradation by specialized Lactobacillus plantarum cells.
    Moraïs S; Shterzer N; Lamed R; Bayer EA; Mizrahi I
    Biotechnol Biofuels; 2014; 7():112. PubMed ID: 25788977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Linker Length Variations on the Biomass-Degrading Performance of Heat-Active Enzyme Chimeras.
    Rizk M; Antranikian G; Elleuche S
    Mol Biotechnol; 2016 Apr; 58(4):268-79. PubMed ID: 26921187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.