These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 27198582)

  • 1. Human Urine-Fueled Light-Driven NADH Regeneration for Redox Biocatalysis.
    Choi WS; Lee SH; Ko JW; Park CB
    ChemSusChem; 2016 Jul; 9(13):1559-64. PubMed ID: 27198582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Progress and Perspectives on Electrochemical Regeneration of Reduced Nicotinamide Adenine Dinucleotide (NADH).
    Immanuel S; Sivasubramanian R; Gul R; Dar MA
    Chem Asian J; 2020 Dec; 15(24):4256-4270. PubMed ID: 33164351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocatalytic C=C Bond Reduction through Carbon Nanodot-Sensitized Regeneration of NADH Analogues.
    Kim J; Lee SH; Tieves F; Choi DS; Hollmann F; Paul CE; Park CB
    Angew Chem Int Ed Engl; 2018 Oct; 57(42):13825-13828. PubMed ID: 30062834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photocatalytic regeneration of nicotinamide cofactor biomimetics drives biocatalytic reduction by Old Yellow enzymes.
    Luo F; Gu X; Zhu Y; Zhou J; Xu G; Ni Y
    Bioorg Chem; 2024 Jun; 147():107418. PubMed ID: 38703441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nicotinamide adenine dinucleotide as a photocatalyst.
    Kim J; Lee SH; Tieves F; Paul CE; Hollmann F; Park CB
    Sci Adv; 2019 Jul; 5(7):eaax0501. PubMed ID: 31334353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymes as modular catalysts for redox half-reactions in H2-powered chemical synthesis: from biology to technology.
    Reeve HA; Ash PA; Park H; Huang A; Posidias M; Tomlinson C; Lenz O; Vincent KA
    Biochem J; 2017 Jan; 474(2):215-230. PubMed ID: 28062838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shedding light on biocatalysis: photoelectrochemical platforms for solar-driven biotransformation.
    Kim J; Park CB
    Curr Opin Chem Biol; 2019 Apr; 49():122-129. PubMed ID: 30612059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silicon nanowires as a rechargeable template for hydride transfer in redox biocatalysis.
    Lee HY; Kim JH; Son EJ; Park CB
    Nanoscale; 2012 Dec; 4(24):7636-40. PubMed ID: 23128966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The bioinspired construction of an ordered carbon nitride array for photocatalytic mediated enzymatic reduction.
    Liu J; Cazelles R; Chen ZP; Zhou H; Galarneau A; Antonietti M
    Phys Chem Chem Phys; 2014 Jul; 16(28):14699-705. PubMed ID: 24915954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visible light-driven NADH regeneration sensitized by proflavine for biocatalysis.
    Nam DH; Park CB
    Chembiochem; 2012 Jun; 13(9):1278-82. PubMed ID: 22555876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silicon nanowire photocathodes for light-driven electroenzymatic synthesis.
    Lee SH; Ryu GM; Nam DH; Kim JH; Park CB
    ChemSusChem; 2014 Nov; 7(11):3007-11. PubMed ID: 25204888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox Biocatalysis: Quantitative Comparisons of Nicotinamide Cofactor Regeneration Methods.
    Sharma VK; Hutchison JM; Allgeier AM
    ChemSusChem; 2022 Nov; 15(22):e202200888. PubMed ID: 36129761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoelectrochemical Reduction of Carbon Dioxide to Methanol through a Highly Efficient Enzyme Cascade.
    Kuk SK; Singh RK; Nam DH; Singh R; Lee JK; Park CB
    Angew Chem Int Ed Engl; 2017 Mar; 56(14):3827-3832. PubMed ID: 28120367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photobiocatalysis: Activating Redox Enzymes by Direct or Indirect Transfer of Photoinduced Electrons.
    Lee SH; Choi DS; Kuk SK; Park CB
    Angew Chem Int Ed Engl; 2018 Jul; 57(27):7958-7985. PubMed ID: 29194901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A modular system for regeneration of NAD cofactors using graphite particles modified with hydrogenase and diaphorase moieties.
    Reeve HA; Lauterbach L; Ash PA; Lenz O; Vincent KA
    Chem Commun (Camb); 2012 Feb; 48(10):1589-91. PubMed ID: 21986817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoenzymatic synthesis through sustainable NADH regeneration by SiO2-supported quantum dots.
    Lee SH; Ryu J; Nam DH; Park CB
    Chem Commun (Camb); 2011 Apr; 47(16):4643-5. PubMed ID: 21336344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solar-Assisted eBiorefinery: Photoelectrochemical Pairing of Oxyfunctionalization and Hydrogenation Reactions.
    Choi DS; Kim J; Hollmann F; Park CB
    Angew Chem Int Ed Engl; 2020 Sep; 59(37):15886-15890. PubMed ID: 32495457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved strategies for electrochemical 1,4-NAD(P)H
    Morrison CS; Armiger WB; Dodds DR; Dordick JS; Koffas MAG
    Biotechnol Adv; 2018; 36(1):120-131. PubMed ID: 29030132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled Biocatalytic Synthesis of a Metal Nanoparticle-Enzyme Hybrid: Demonstration for Catalytic H
    Browne LBF; Sudmeier T; Landis MA; Allen CS; Vincent KA
    Angew Chem Int Ed Engl; 2024 Jul; 63(27):e202404024. PubMed ID: 38641561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porphyrin-sensitized nanoparticulate TiO2 as the photoanode of a hybrid photoelectrochemical biofuel cell.
    Brune A; Jeong G; Liddell PA; Sotomura T; Moore TA; Moore AL; Gust D
    Langmuir; 2004 Sep; 20(19):8366-71. PubMed ID: 15350115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.