These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 27198582)

  • 21. AIE Polymer Micelle/Vesicle Photocatalysts Combined with Native Enzymes for Aerobic Photobiocatalysis.
    Zhang N; Trépout S; Chen H; Li MH
    J Am Chem Soc; 2023 Jan; 145(1):288-299. PubMed ID: 36562998
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biocatalysis Fueled by Light: On the Versatile Combination of Photocatalysis and Enzymes.
    Seel CJ; Gulder T
    Chembiochem; 2019 Aug; 20(15):1871-1897. PubMed ID: 30864191
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Self-biasing photoelectrochemical cell for spontaneous overall water splitting under visible-light illumination.
    Chen Q; Li J; Li X; Huang K; Zhou B; Shangguan W
    ChemSusChem; 2013 Jul; 6(7):1276-81. PubMed ID: 23775929
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Laminar flow-based electrochemical microreactor for efficient regeneration of nicotinamide cofactors for biocatalysis.
    Yoon SK; Choban ER; Kane C; Tzedakis T; Kenis PJ
    J Am Chem Soc; 2005 Aug; 127(30):10466-7. PubMed ID: 16045315
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New approaches to NAD(P)H regeneration in the biosynthesis systems.
    Han L; Liang B
    World J Microbiol Biotechnol; 2018 Sep; 34(10):141. PubMed ID: 30203299
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrochemical Bioreactor Technology for Biocatalysis and Microbial Electrosynthesis.
    Morrison C; Heitmann E; Armiger W; Dodds D; Koffas M
    Adv Appl Microbiol; 2018; 105():51-86. PubMed ID: 30342723
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of the mechanism of the NADH-dependent polysulfide reductase (Npsr) from Shewanella loihica PV-4: formation of a productive NADH-enzyme complex and its role in the general mechanism of NADH and FAD-dependent enzymes.
    Lee KH; Humbarger S; Bahnvadia R; Sazinsky MH; Crane EJ
    Biochim Biophys Acta; 2014 Sep; 1844(9):1708-17. PubMed ID: 24981797
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Zn-containing porphyrin as a biomimetic light-harvesting molecule for biocatalyzed artificial photosynthesis.
    Kim JH; Lee SH; Lee JS; Lee M; Park CB
    Chem Commun (Camb); 2011 Oct; 47(37):10227-9. PubMed ID: 21748164
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enzyme-assisted reforming of glucose to hydrogen in a photoelectrochemical cell.
    Hambourger M; Brune A; Gust D; Moore AL; Moore TA
    Photochem Photobiol; 2005; 81(4):1015-20. PubMed ID: 15960593
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Complexation of nicotinamide adenine dinucleotide with ferric and ferrous ions.
    Lvovich V; Scheeline A
    Arch Biochem Biophys; 1995 Jun; 320(1):1-13. PubMed ID: 7793967
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Association and redox properties of the putidaredoxin reductase-nicotinamide adenine dinucleotide complex.
    Reipa V; Holden MJ; Vilker VL
    Biochemistry; 2007 Nov; 46(45):13235-44. PubMed ID: 17941648
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enzymatic self-sufficient hydride transfer processes.
    Tassano E; Hall M
    Chem Soc Rev; 2019 Nov; 48(23):5596-5615. PubMed ID: 31675020
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A comparison between the use of a redox mediator in solution and of surface modified electrodes in the electrocatalytic oxidation of nicotinamide adenine dinucleotide.
    Antiochia R; Lavagnini I; Pastore P; Magno F
    Bioelectrochemistry; 2004 Sep; 64(2):157-63. PubMed ID: 15296789
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electropolymerized flavin adenine dinucleotide as an advanced NADH transducer.
    Karyakin AA; Ivanova YN; Revunova KV; Karyakina EE
    Anal Chem; 2004 Apr; 76(7):2004-9. PubMed ID: 15053664
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Indirect electrochemical reduction of nicotinamide coenzymes.
    Vuorilehto K; Lütz S; Wandrey C
    Bioelectrochemistry; 2004 Dec; 65(1):1-7. PubMed ID: 15522685
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Parameters affecting the chemical work output of a hybrid photoelectrochemical biofuel cell.
    Hambourger M; Liddell PA; Gust D; Moore AL; Moore TA
    Photochem Photobiol Sci; 2007 Apr; 6(4):431-7. PubMed ID: 17404638
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrocatalytic oxidation of NADH at single-wall carbon-nanotube-paste electrodes: kinetic considerations for use of a redox mediator in solution and dissolved in the paste.
    Antiochia R; Lavagnini I; Magno F
    Anal Bioanal Chem; 2005 Apr; 381(7):1355-61. PubMed ID: 15761736
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reversible, electrochemical interconversion of NADH and NAD+ by the catalytic (Ilambda) subcomplex of mitochondrial NADH:ubiquinone oxidoreductase (complex I).
    Zu Y; Shannon RJ; Hirst J
    J Am Chem Soc; 2003 May; 125(20):6020-1. PubMed ID: 12785808
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of formal potential of NADH/NAD+ redox couple and catalytic oxidation of NADH using poly(phenosafranin)-modified carbon electrodes.
    Saleh FS; Rahman MR; Okajima T; Mao L; Ohsaka T
    Bioelectrochemistry; 2011 Feb; 80(2):121-7. PubMed ID: 20667793
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integration of Artificial Photosynthesis System for Enhanced Electronic Energy-Transfer Efficacy: A Case Study for Solar-Energy Driven Bioconversion of Carbon Dioxide to Methanol.
    Ji X; Su Z; Wang P; Ma G; Zhang S
    Small; 2016 Sep; 12(34):4753-62. PubMed ID: 27273818
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.